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Abstract

We study response behavior in surveys and show how the explanatory power of self-
reports can be improved. First, we develop a choice model of survey response behav-
ior under the assumption that the respondent has imperfect self-knowledge about her
individual characteristics. In panel data, the model predicts that the variance in re-
sponses for different characteristics increases in self-knowledge and that the variance
for a given characteristic over time is non-monotonic in self-knowledge. Importantly,
the ratio of these variances identifies an individual’s level of self-knowledge, i.e., the
latter can be inferred from observed response patterns. Second, we develop a con-
sistent and unbiased estimator for self-knowledge based on the model. Third, we
run an experiment to test the model’s main predictions in a context where the re-
searcher knows the true underlying characteristics. The data confirm the model’s
predictions as well as the estimator’s validity. Finally, we turn to a large panel
data set, estimate individual levels of self-knowledge, and show that accounting for
differences in self-knowledge significantly increases the explanatory power of regres-
sion models. Using a median split in self-knowledge and regressing risky behaviors
on self-reported risk attitudes, we find that the R2 can be multiple times larger for
above- than below-median subjects. Similarly, gender differences in risk attitudes are
considerably larger when restricting samples to subjects with high self-knowledge.
These examples illustrate how using the estimator may improve inference from sur-
vey data.
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1 Introduction

Survey evidence is a major source of knowledge in the social sciences, including economics.
With growing interest in measuring cognitive and non-cognitive skills—such as economic
preferences, beliefs, attitudes, and values—survey evidence is gaining increasing relevance
in economics (Heckman, Stixrud, and Urzua, 2006; Almlund et al., 2011; Falk et al.,
2018). This paper provides a method to improve the explanatory power of subjective
survey data. The method is derived from a simple model of survey response behavior
that allows identifying more vs. less informative respondents based only on patterns of
their response behavior. Hence, this paper makes two main contributions: it offers a
framework for modeling and understanding survey response behavior in general and it
derives a method to empirically identify more or less reliable answers, which in turn helps
to improve the explanatory power of survey measures.

As a first step, we derive a simple choice model of survey response behavior. In
the model, we are serious about the idea that when being asked to report an individual
characteristic such as a preference, belief, or some non-cognitive skill, a respondent has
to make herself the object of her own self-assessment and makes a choice. We assume
that there exists a true type (level of each characteristic) but that the respondent is not
perfectly aware of her true type. This limited self-knowledge is modeled as an imperfect
signal that the respondent receives about her true type. Differences in self-knowledge can
capture the fact that individuals vary in their capacity to retrieve or memorize relevant
information about themselves, engage more or less in reflecting who they are, or that some
people simply lack life experience in the domain of interest. We further assume that the
respondent wants to minimize the squared distance between her true type and her report,
i.e., the interests of the respondent and the researcher are aligned. Conditional on the
informativeness of the signal, our agent’s Bayesian optimal report is a weighted sum of
the population mean of the respective characteristic and her signal. The more informative
the signal, the greater the weight placed on the signal relative to the population mean.
We analyze the expected variance of respondents’ answering behavior conditional on the
informativeness of the signal, both over time and between characteristics. We find that
the variance between characteristics increases in the informativeness of the signal, which
mirrors the fact that the more confident a respondent is about her answer, the more she
deviates in expectation from the population mean. In contrast, the within variance—the
variance of responses for a given characteristic over time—is non-monotonic in the signal
precision. The intuition is that response behavior is stable over time if a person knows
herself either very well or not at all. This result cautions against the use of simple stability
to measure the accuracy of signals and reports. Importantly, we show that the ratio of
the variance between characteristics and the variance over time (for given characteristics)
is equal to the informativeness of the signal. This key result implies that we can use
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observed variances to estimate individual differences in self-knowledge or the accuracy of
respective reports.

We provide several extensions of the model and discuss their implications for expected
response behavior. Our first extension relaxes the assumption of exogenous signals and
explores the consequences of endogenous precision. We derive an expression for the choice
of signal precision and discuss implications for how the quality of survey responses reacts
to incentives. Second, we relax the assumption that respondents are perfectly aware of the
signal strength, i.e., how well they know themselves. Instead, we allow for subjective levels
of self-knowledge that are higher or lower than actual self-knowledge. While subjective
beliefs about self-knowledge affect the distribution of responses, we show that they do
not impede the identification of differences in self-knowledge, simply because they cancel
out. Third, we allow for individual-specific scale use, i.e., a tendency to report either
rather extreme or moderate answers. Again, we show that scale use affects responses
but that the identification of self-knowledge remains unchanged. Finally, we relax the
assumption that respondents want to report their type truthfully. Instead, we allow for
response biases arising from motives such as social desirability or image effects. We study
the implications of such motives and show that respondents act similarly as in the case
of subjective scale use.

The second step in the paper is to use the theoretical results in empirical applications—
especially the insight that the precision of signals about types can be inferred from the
ratio of the between- and the within-variance. We first show that self-knowledge can
be estimated using a closed-form estimator before discussing results from a laboratory
experiment designed to test the main predictions of the model. Subsequently, we analyze
representative panel data to show how accounting for signal precision affects empirical
results and explained variance.

To derive an estimator of signal precision—or self-knowledge—from panel data, we
essentially consider the ratio between two sample variances, namely the between-variance
(the variance of responses between items) and the within-variance (the variance for a given
item over time). These are the sample analogs to our theoretically derived variances. We
study the asymptotic properties of the estimator and formally show its consistency as
well as unbiasedness. Using simulations, we illustrate the performance of the estimator
for realistic sample sizes. We study various combinations of the number of respondents,
survey items, and waves (periods), respectively. The estimator generally performs well.
For example, for 100 respondents, 15 items, and three waves, the rank correlation between
the estimated and the true level of self-knowledge is 0.76.

To empirically test the main predictions of the model, it is crucial to observe re-
sponses and compare them with respondents’ true types. However, this is difficult—if not
impossible—with typical survey data. Therefore, we ran a laboratory experiment that
creates a panel data set with types that are imperfectly known to subjects but perfectly
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known to the researcher. In particular, subjects in the experiment were paid to accu-
rately report the sizes of 60 male figures shown to them on separate computer screens.
This setup allows us to observe subjects’ reports and compare them with the respective
true types. Results from the experiment confirm the main predictions derived from the
model. First, subjects’ reports are biased towards the mean, i.e., small sizes are, on aver-
age, overestimated, and large sizes are typically underestimated. Second, subjects who are
estimated to be more informative actually provide more accurate reports. Based on the
estimates, we split the sample and regress reports on true types. We find that the regres-
sion coefficient for the above-median sample is about 2.5 times as large as the respective
coefficient for below-median subjects and that the explanatory power in terms of R2 is
about five times as large. Third, we use the experiment to create random variation in
signal precision. For this purpose, we randomized subjects into one of two treatments: a
Long-treatment in which they saw the figures for 7.5 seconds each, and a Short-treatment
in which each figure was presented only for 0.5 seconds. We show that we can use our em-
pirical estimates to predict subjects’ treatment status, i.e., we are able to predict whether
subjects were assigned to the treatment condition with high or with low signal precision.

Finally, we apply our estimator to a large representative panel data set, the German
Socio-economic Panel (SOEP; Goebel et al., 2019). We provide several examples to illus-
trate how the suggested estimates of self-knowledge can help to increase the explanatory
power of regressions based on self-reports. In particular, we use a fifteen-item Big Five
personality inventory from multiple waves of the SOEP to estimate self-knowledge. Using
these estimates, we form two sub-samples: one with above- and one with below-median
values of estimated self-knowledge, respectively. As an illustrative example, we choose
the context of risk attitudes, which has received a lot of attention in the literature. We
study both determinants and consequences of risk attitudes, measured on an eleven-point
Likert scale. To illustrate, we find that the gender effect on the general willingness to
take risks is substantially larger for the above-median sample than for the below-median
sample. Moreover, the difference in R2 between the two sub-samples amounts to 36%.
Likewise, when we regress the likelihood of receiving performance pay as part of one’s
compensation on the willingness to take risks, the explained variance (R2) is 238% higher
in the above-median sample than in the below-median sample.

Our paper is related to multiple strands of the literature. As we take the informational
constraints of the agent seriously and study their choice implications, we relate to the work
on rational inattention (Sims, 1998, 2003; Caplin and Dean, 2015; Matějka and McKay,
2015; Caplin et al., 2020). This literature focuses on flexible information acquisition
and studies what type of information is acquired in a single-agent setting. Our goal is
different, and we analyze how to identify agents’ levels of information in a situation with
many agents who share a common prior. Our framework enables analyzing the provision
of incentives in surveys as studied, e.g., in Prelec (2004) and Cvitanić et al. (2017) as

3



well as how contextual factors such as social desirability affect survey responses (see,
e.g., Bénabou et al., 2020; Chen et al., 2020). The notion of limited self-knowledge and
its economic consequences for the labor market has been studied in Falk, Huffman, and
Sunde (2006a, 2006b). The model is also related to work on preferences for consistency, as
modeled and tested in Falk and Zimmermann (2017) and applied to survey methodology
in Falk and Zimmermann (2013).

Moreover, the paper contributes to the literature on measurement error in surveys (for
an overview, see Bound, Brown, and Mathiowetz, 2001). For the case of classical measure-
ment error—where deviations in answers are independent of the respective true value—,
instrumental variables techniques are capable of removing bias. Recently, Gillen, Snow-
berg, and Yariv (2019) have suggested measuring duplicate instances of control variables
and using them as mutual instruments. Hyslop and Imbens (2001) consider a model that
is related to ours where an agent observes a Normal signal and reports his best estimate
of an underlying variable of interest. They analyze the effect of the resulting non-classical
measurement error on regression coefficients but do not consider remedies. The focus of
our paper is to estimate the precision of the agent’s signal, which allows placing higher
weight on subjects with better self-knowledge.

Drerup, Enke, and Gaudecker (2017) estimate a structural model of stock market
participation that identifies individuals for whom relevant preferences and beliefs have
increased explanatory power. Alternative approaches to deal with measurement error in
subjective survey data use structural estimation techniques to recover underlying prim-
itives and choice models, finding that accounting for measurement error yields greater
predictive power (Kimball, Sahm, and Shapiro, 2008; Beauchamp, Cesarini, and Johan-
nesson, 2017).1 Despite not referring to qualitative survey measures, a related contribution
comes from Beauchamp et al. (2020), who analyze how accounting for the “compromise
effect”—whereby subjects’ answers tend towards the center of the provided scale—, can
improve estimates for risk preference.

The remainder of the paper proceeds as follows. Section 2 develops the model with
its basic framework and extensions. Building upon its insights, Section 3 introduces
the estimator, presents its theoretical properties, and explores its performance in finite
samples. Section 4 presents the stylized laboratory experiment. In Section 5, we apply the
estimator to a large and representative panel and explore its implications for improving
estimates. Finally, Section 6 concludes.

1In the psychology literature, processes that underlie response behavior have been studied under the
label of cognitive aspects of survey methodology (see Sudman, Bradburn, and Schwarz, 1996; Bradburn,
Sudman, and Wansink, 2004; Schwarz, 2007). Broadly, our paper is also related to classical test theory
and item response theory (see, e.g., Edwards, 2009; Kyllonen and Zu, 2016; Bolsinova, Boeck, and
Tijmstra, 2017).
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2 Model

In this section, we first introduce a simple framework to model the answering process in
surveys, based on limited self-knowledge. Second, we derive how patterns in answering
behavior reveal the informational content of responses, providing the intuition for how we
later estimate self-knowledge. Finally, we present various extensions of the baseline model
to study further important aspects of the answering process and show the robustness of
our identification approach.

Introspection and Self-knowledge. The context that we are interested in is a simple
survey situation. A researcher asks a respondent (or agent) a question about a specific
characteristic, e.g., some preference, personality trait, or belief.2 The agent’s true type
is denoted by �, and we assume that it is normally distributed in the population with
mean �� and variance �2. Agents act upon their true types but vary with respect to how
well they know their type. Hence, when asked about her type �, the respondent does not
perfectly know herself but instead engages in a process of introspection. The outcome
of this process is an informative but noisy signal x about her true type. The signal is
normally distributed with a mean equal to the agent’s type � and variance �2=�. The
parameter � > 0 hence indicates the precision of the signal relative to the variance in
the population. The higher the value of � , the more precise the signal that an individual
receives about herself. We refer to � as self-knowledge.

Response Behavior. After reflecting on her true type �, the respondent reports her
answer. We assume that she seeks to provide a response r that is as precise as possible,
i.e., the interests of the researcher and respondent are perfectly aligned.3 Formally, the
respondent uses her signal x to provide a response r that minimizes the expected quadratic
distance to her unknown true type, i.e.,

u�(r) = − (r − �)2 : (1)

Hence, she reports her best guess of her type r = E[� |x]. The respondent’s prior equals
the distribution of types in the population with mean ��. Substituting for the expected
value of her posterior belief about her type, we obtain by Bayes’ Rule that

r =
�� + � x

1 + �
: (2)

2For example, the researcher may ask the respondent to state her willingness to take risks, her level
of agreeableness or conscientiousness, or her belief about her internal or external locus of control.

3For many interview situations, we think that this is a valid assumption. However, there are contexts
in which respondents may want to strategically signal a specific type that is actually different from
their belief about their true type for reputational or “social desirability” reasons. For a discussion, see
Section 2.2.4.
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Intuitively, the higher her self-knowledge � , the more precise the respondent’s signal, and
the more weight she puts on her signal relative to the population mean ��. In the limit,
if she knows nothing about herself, her best estimate is to report the mean of her prior,
whereas if she knows herself perfectly, she disregards the prior completely.

This concludes our basic framework. The model defines a mapping from true types
to distributions over observable responses, taking into account the notion of limited self-
knowledge. In the next subsection, we study how response patterns can be used to identify
differences in self-knowledge.

2.1 Response Patterns

We now explore the implications of limited self-knowledge for response patterns. We are
particularly interested in the variances in reports, both unconditional and conditional on
an agent’s type. These variances will allow us to identify differences in self-knowledge. In
Section 3, we will build on these insights when we derive an estimator for an individual’s
level of self-knowledge in panel data.

Expected Report. It follows from Equation (2) that the expected report conditional
on the true type � equals

E[r | �] =
�� + � �

1 + �
: (3)

For low values of self-knowledge � , the expected report is close to the population mean
��, irrespective of the true type �. For large values of � , the expected report converges to
the true type �.

Between-variance. Consider now the variance of conditional expected reports. In the
context of panel data, one can think of this theoretical quantity as an approximation
of the variance in average reports concerning different characteristics. Following this
interpretation (as the variance between different characteristics), we refer to it as the
between-variance. It is given by

�2
between := var(E[r | �]) = var

� �� + � �

1 + �

�
=

�
�

1 + �

�2

var(�) =

�
�

1 + �

�2

�2 :

(4)

The between-variance is strictly increasing in self-knowledge � . This reflects the fact that
agents with high levels of self-knowledge put relatively little weight on their prior. Instead,
they provide reports that tend to deviate from the population mean.

6



Note: Variances σ2
between and σ2

within as functions of τ (values on the left axis). The solid line shows the
ratio of the two variances, which is equal to τ (values on the right axis).

Figure 1: Theoretical variances

Within-variance. Now consider the variance conditional on an agent’s type. This
theoretical quantity can be thought of as the variation in responses of an agent responding
multiple times to questions about the same characteristic. We call this variation the
within-variance of the agent’s reports. It is given by

�2
within := var(r | �) = var

� �� + � x

1 + �

���� ��
=

�
�

1 + �

�2

var(x | �) =
�

(1 + �)2 �
2 :

(5)

The relationship between self-knowledge � and the within-variance is non-monotonic.
For very low levels of � , the variance is low, simply because the respondent refers to
her prior. As � increases, the variance increases as more weight is placed on the noisy
signal. However, as � further increases, the variance decreases because the signal about
the true type becomes increasingly precise. From a researcher’s perspective, this pattern
implies that stable responses—i.e., similar responses regarding the same characteristics
over time—do not necessarily indicate high levels of self-knowledge and precision. The
most stable responses come from respondents who know themselves perfectly—or who do
not know themselves at all.

Figure 1 illustrates the relationship between the two variances and self-knowledge.
It plots the between-variance (long dashes) and the within-variance (short dashes) as
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functions of self-knowledge � . As � goes to zero, both variances converge to zero. This
means that the respondent provides the same answer (equal to the prior) to any question.
As � increases, the respondent places higher weight on her signal, which increases both the
within- and between-variance. At � = 1, i.e., when the signal x is exactly as informative
as the respondent’s prior knowledge about the population, the within-variance reaches its
maximum and is equal to the between-variance. Beyond this point, the between-variance
further increases and ultimately converges to the variance of true types in the population,
�2. At the same time, the within-variance strictly decreases and converges to zero, because
a respondent with perfect self-knowledge will always provide exactly the same report for
a given characteristic.

Both the between- and within-variance contain information about the respondent’s
level of self-knowledge � . While a large between-variance is always “good news,” indicating
high levels of � , a low within-variance can reflect either high or low levels of � , respectively.
However, considering both variances jointly perfectly reveals the level of self-knowledge.
In fact, the ratio of the between- and within-variance equals the degree of self-knowledge:

�2
between

�2
within

=

�
�

1+�

�2
�2

�
(1+�)2 �2

= � : (6)

The respective relationship is also shown in Figure 1 where, for each level of � , the thin
solid line plots the ratio of the two variances.

Our paper builds on this insight. We show that the relationship between the variances
and self-knowledge is robust to various extensions of the model, construct a finite sample
estimator based on this relationship, and show that this estimator indeed predicts the
informativeness of subjects’ responses both in lab and field data.

2.2 Extensions

In this subsection, we study four extensions of the basic framework. The purpose of this
exercise is twofold. The first aim is to show that the framework enables integrating addi-
tional important aspects of the survey response process in a meaningful way. In particular,
we consider the role of costly introspection, deviations of subjective self-knowledge from
actual self-knowledge, subjective scale use, and social desirability issues. Second, we show
that for the extensions studied, the result that self-knowledge � can be inferred as the
ratio of the between- and within-variance is robust.

2.2.1 Endogenous Precision

Our first extension considers endogenous precision. So far, we have modeled the process of
introspection as receiving an exogenous signal with a fixed relative precision � . However,
the cognitive process of introspection requires mental effort, and a respondent has to decide
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how much effort to invest. For example, the agent chooses how long and intensively she
engages in recollecting past behaviors to extract her type and how carefully she evaluates
and maps information into a response. We assume that the variance of the signal x is no
longer fixed at a given level of �2=�. Instead, � is chosen by the agent at a cost �=a for
some ability a ∈ R+. The utility function (corresponding to Equation (1)) equals

u�(r; �) = −m (r − �)2 − �

a
:

Here, m ∈ R+ measures the motivation of the respondent to provide an accurate answer,
and it can be thought of as either extrinsic or intrinsic motivation.4 Assume that ma >

��2, as, otherwise, incentives are too weak to motivate any effort and a precision of zero
is optimal.

Lemma 1. The respondent’s optimal precision is given by � � =
√
ma� − 1.

The chosen signal precision � � is increasing in both incentives m and ability a, i.e., a
higher level of incentives or ability generates more precise signals. The proof of Lemma 1
is provided in Appendix A.

In the presence of endogenous effort, subjects giving high- vs. low-quality answers can
be distinguished by the exact same response patterns as for the case with exogenous self-
knowledge. However, the interpretation changes, as differences may now reflect differences
in motivation m or ability a. In fact, the model predicts that the higher the incentives,
the more reliable and informative the responses. This is exactly the rationale for paying
subjects in economic experiments (Smith, 1976; Camerer and Hogarth, 1999) and similar
attempts to incentivize survey responses as, e.g., Prelec’s Bayesian Truth Serum (Prelec,
2004). In addition, differences may reflect motivational dispositions (e.g., mood, fatigue,
boredom) or fundamental differences in “introspection ability” a, such as cognitive skills,
memory, and recollection capabilities.

2.2.2 Subjective Self-knowledge

The basic framework assumes that the respondent knows the relative precision � of her
signal x. In other words, she perfectly knows how well she knows herself and weighs her
signals accordingly. However, a large body of evidence has shown that individuals often
misperceive their own knowledge and skills (Camerer and Lovallo, 1999; Malmendier and
Tate, 2005). Applied to our context, respondents may be over-confident and place too
much weight on their signal x, or they are under-confident and place too much weight on
the prior. In either case, this will result in a wedge between the optimal and the actual
response, again potentially complicating inference about respondents’ true types.

4The former could reflect, e.g., monetary or social approval incentives, while the latter may capture
motives such as a desire to respond truthfully and accurately or simply an interest in (promoting) research.
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To model potential biases in perceived self-knowledge, we introduce subjective self-
knowledge ~� . A respondent has correct beliefs about her self-knowledge if ~� = � , she is
under-confident if ~� < � , and she is over-confident if ~� > � . We assume that the agent
is naive and that when determining her survey response, she applies relative weights
according to her subjective self-knowledge ~� . Equation (2) changes as follows:

r =
�� + ~� x

1 + ~�

Corresponding to Equation (4), the between-variance becomes

�2
between = var(E[R | �]) =

�
~�

1 + ~�

�2

�2 :

Hence, the variability in answers between different items reflects the respondent’s subjec-
tive self-knowledge but is independent of self-knowledge itself. Intuitively, as the between-
variance is based only on the expected response, which is independent of the true precision
of the agent’s signal � , the variance is also independent of the true precision of the agent’s
signal.

This is different for the within-variance, corresponding to Equation (5).

�2
within = var(r | �) =

�
~�

1 + ~�

�2
�2

�
:

The latter depends on both subjective self-knowledge as well as actual self-knowledge.
Intuitively, the within-variance of responses is affected by the respondent’s subjective self-
knowledge ~� through the weight that she places on her signal and by her self-knowledge
� through the variance of the signal.5

Importantly, the result from Equation (6) about the ratio of the two variances still
holds.

�2
between

�2
within

=

�
�̃

1+�̃

�2
�2�

�̃
1+�̃

�2 �2

�

= �

Hence, while deviations from correct beliefs about the precision of one’s signals affect
expected response behavior in general, inference about � remains feasible.

2.2.3 Subjective Scale Use

Empirical research typically assumes that individuals who want to express the same level
of agreement or disagreement with respect to a particular survey item will respond in the
exact same way. For example, two respondents intending to express the exact same will-
ingness to take risks on a Likert scale would be expected to choose the exact same answer

5Observe that only for ~τ →∞, the model predicts classical measurement error.
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category. However, if response scales are subjectively interpreted, responses may differ.
Hence, the mapping from an intended response to some scale may depend on individual-
specific notions of how to express a given level of agreement or disagreement. We suggest
a simple way how to model this kind of subjective scale use and show that it affects
responses in general but not the estimation approach for � suggested by Equation (6).

In particular, assume that an agent has arrived at her intended report and now needs
to map it to an actual report r on an answering scale. This mapping may be individual-
specific in the sense that some agents may use more “extreme” answers while others use
more “moderate” answers to express the same information. For a given intended response,
therefore, two agents may come up with different actual responses. We assume that the
agent’s response is scaled away from some point c ∈ R, e.g., the center of the scale, by a
factor � ∈ (0; 1]. The report and its expected value (corresponding to Equations (2.2.3)
and (3), respectively) are then given by

r = (1− �) c+ �

� �� + � x

1 + �

�
and E[r | �] = (1− �) c+ �

� �� + � �

1 + �

�
:

Depending on �, actual responses may thus be pushed towards the center of the scale,
rendering the interpretation of responses more difficult. This holds in particular if � is sys-
tematically correlated with underlying types (such as preferences) or group characteristics
under study (such as gender or socioeconomic status).

The between-variance (corresponding to Equation (4)) becomes

�2
between = var(E[R | �]) = var

�
(1− �) c+ �

�� + � �

1 + �

�
= �2

�
�

1 + �

�2

var(�) = �2

�
�

1 + �

�2

�2 ;

and the within-variance (corresponding to Equation (5)) becomes

�2
within = var(r | �) = var

�
(1− �) c+ �

�� + � x

1 + �

���� ��
= �2

�
�

1 + �

�2

var(x | �) = �2 �

(1 + �)2 �
2 :

We see that both variances increase quadratically in the scale use parameter �. How-
ever, for the ratio of the two, the effect of scale use cancels out, and it still holds that the
ratio equals � .

�2
between

�2
within

=
�2
�

�
1+�

�2
�2

�2 �
(1+�)2 �2

= �
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2.2.4 Social Desirability Effects

In some situations, respondents might not want to truthfully report their type but rather
provide an answer that is deemed socially desirable. These contexts are likely to arise
if the interview situation is not anonymous (audience effects) and/or if items are image
relevant. For example, it is plausible that a respondent feels more comfortable reporting
that she is an honest rather than a dishonest person. Such concerns can be integrated
into our framework by adding a desirable answer d ∈ R. Respondents’ objective now is
to minimize the weighted sum of the squared distances to their type and the desirable
answer, respectively. The utility function is thus

u�;d(r) = − (1−  ) (r − �)2 −  (r − d)2 ;

where  ∈ [0; 1] measures the intensity of the preference to report d. The optimal report
of a respondent equals the weighted sum of the best guess of her type � and the desirable
answer

r = (1−  )

� �� + �x

1 + �

�
+  d :

The respondent thus acts as if subject to subjective scale use, as introduced in Sec-
tion 2.2.3. The main difference between subjective scale use and desirability arises in the
context of multiple agents and characteristics: while the scale use parameters (�, c) are
naturally agent-specific, the desirability parameters ( , d) are naturally specific to the
characteristic.

3 Estimator

In this section, we derive an estimator for an individual’s level of self-knowledge that is
based on the insights from Section 2. We consider a panel data set comprising I > 1

agents and T > 1 waves. In each wave t, each agent i answers an identical set of K > 1

questions about distinct, time-invariant characteristics, traits, or beliefs. We denote by
�ik the value of the kth characteristic for agent i and assume that characteristics are
independently normally distributed in the population with mean �� and variance �2. In
contemplating the answer to question k in wave t, agent i generates a signal xikt that she
uses to form her answer rikt. The signal xikt is normally distributed with mean �i and
variance �2=�i, independent of all other signals, such that the optimal response is given
by

rikt =
�� + �i xikt

1 + �i
:

Given the K×T answers observed for each agent i, the objective of a researcher is to esti-
mate agents’ levels of self-knowledge �i. In Section 2, we have shown that � equals the (the-
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oretical) variance among expected answers to different questions (between-variance) di-
vided by the (theoretical) variance among answers to the same questions (within-variance).
To construct an estimator �̂i, we use the sample variance between average answers for dif-
ferent characteristics as an approximation of the true between-variance and the average
sample variance of answers for a given characteristic as an approximation of the true
within-variance. Denote agent i’s average answer to question k by �rik = 1

T

PT
t=1 rikt

and her average answer over all questions by �ri = 1
K

PK
k=1 �rik. Our estimator �̂i for the

self-knowledge of agent i is given by

�̂i =
1

K�1

PK
k=1 (�rik − �ri)

2

1
K(T�1)�2

PK
k=1

PT
t=1 (rikt − �rik)

2
− 1

T
: (7)

The enumerator in the first summand of the expression captures the variation between the
average answers of an agent for different characteristics, while the denominator expresses
the average variation in answers within characteristics. Since the expected value of the
ratio of two random variables is not the same as the ratio of their respective individual
expected values, the denominator is adjusted by a constant factor relative to the unbiased
estimator of the within-variance6 and a correction term of 1=T is subtracted from the
ratio. These two adjustments are necessary to ensure that the estimator is unbiased.

The following theorem establishes that �̂i is a consistent, unbiased estimator of self-
knowledge �i and describes its properties.

Theorem. For every K;T that satisfy K(T − 1) > 4.

1. The estimator �̂i satisfies

�̂i =

�
�i +

1

T

�
K(T − 1)− 2

K(T − 1)
Fi −

1

T
(8)

for some random variable Fi that is F distributed with K − 1; K(T − 1) degrees of
freedom for every fixed vector of parameters �i; �; ��.

2. �̂i is an unbiased estimator for �i, i.e., E[�̂i | �i] = �i.

3. The standard error of the estimator �̂i is given by

p
E[(�̂i − �i)2 | �i] =

�
�i +

1

T

�s
2((K − 1) +K(T − 1)− 2)

(K − 1)(K(T − 1)− 4)
: (9)

4. �̂i is a consistent estimator and converges to �i at the rate 1=
p
K in the number of

attributes, and for all K > 4 it satisfies the following upper bound independent of

6An unbiased estimator of the within-variance is given by 1
K(T−1)

PK
k=1

PT
t=1 (rikt − �rik)

2.
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the number of repeated observations T :

p
E[(�̂i − �i)2 | �i] ≤

2�i + 1√
K − 4

The proof of the theorem is provided in Appendix A. Part 4 of the theorem shows that
for retrieving precise estimates, additional questions are more valuable than additional
waves. This is the case because, intuitively, having additional questions adds to the
precision of estimating both the between as well as the (average) within-variance, whereas
additional waves only improve the precision of the estimated within-variance. Therefore,
as K goes to infinity, the estimator converges to the true value even for just two waves,
while the precision of the estimator is always limited for a finite number of questions.

Remark. As we show in the proof of the theorem in Appendix A, the properties of the
estimator extend unchanged to the model with endogenous effort, subjective self-knowledge,
and subjective scale use. We state the properties here without these extensions for ease of
exposition.

Next, we illustrate our model and the behavior of the estimator using numerical simu-
lations. For all illustrations, agents’ levels of self-knowledge �i are drawn from a uniform
distribution with support [0:1; 5], and we abstract from subjective scale use and subjec-
tive self-knowledge. The true average value of characteristics �� is set to 5 and the true
population variance �2 equals 1.

Figure 2 displays the joint distribution of the true level of self-knowledge �i and the
sample within-variance, the sample between-variance, and estimated self-knowledge �̂i,
respectively. For the within-variance, we observe the expected non-monotonic, hump-
shaped relationship with the true level of self-knowledge (Figure 2a). The estimates for

(a) Within-variance (b) Between-variance (c) Estimated τ
Note: Kernel-density estimates, where lighter shading corresponds to a higher estimated density. Each
panel is based on the same 100 simulations, each with I =1,000 hypothetical individuals, for whom
reports about K = 50 characteristics are observed T = 3 times. The panels use Gaussian kernels with
bandwidth selection according to Silverman’s rule.

Figure 2: Simulations
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Table 1: Accuracy of estimates for different sample sizes

(1) (2) (3) (4) (5)

I (respondents) 100 10,000 100 100 100
K (characteristics) 15 15 50 15 50
T (waves) 3 3 3 10 10

Correlation 0.68 0.68 0.87 0.76 0.91
Rank correlation 0.76 0.77 0.90 0.82 0.93
Median split 80% 80% 88% 83% 90%

the between-variance increase in the true level of self-knowledge, but heavily “fan out”
for higher levels of true self-knowledge (Figure 2b). Our proposed estimator for self-
knowledge is strongly concentrated around the 45-degree line and thus highly informative
about agents’ true levels of self-knowledge (Figure 2c).

In Table 1, we illustrate how the estimator performs for various sample sizes. We con-
sider 100 or 10,000 agents, 15 or 50 characteristics, and 3 or 10 waves, respectively. For
each scenario, we run 10,000 simulations and report the average value of three measures
for the quality of the estimates: Pearson’s correlation and Spearman’s rank correlation be-
tween estimated and true self-knowledge and the proportion of simulated agents correctly
identified as having a level of self-knowledge above or below the value of the median. If
our estimator had no informational value at all, we would expect a correlation and rank
correlation of zero and 50% of correctly-assigned agents in the median split.

The values of the correlation and the rank correlation coefficients of 0.68 and 0.76
shown in Column 1 for I = 100, K = 15, and T = 3 suggest that the estimator is
already informative about self-knowledge for modest sample sizes. This is confirmed by
80% of hypothetical agents being assigned to the correct half of the sample in terms of
self-knowledge. In Column 2, the number of hypothetical agents is increased to 10,000.
The quality of predictions remains almost exactly unchanged, reflecting the fact that our
estimator does not use population information. However, as can be seen from Column 3,
estimates strongly benefit from a larger number of characteristics (50 instead of 15), in
line with Part 4 of the theorem. Relative to these increases, the increase in performance
from a higher number of answers per characteristic in Column 4 (ten instead of three) is
not quite as large (in line with Part 4 of the theorem, which shows that the standard error
does not vanish in T ). Column 5 combines the number of characteristics from Column 3
with the number of waves from Column 4, reaching the best performance, with correlation
coefficients above 0.9 and a median split result of 90%. In sum, we find that the estimator
performs reasonably well with a modest number of fifteen characteristics and three waves,
and its performance can be increased, in particular, by a larger number of characteristics.
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4 Experimental Evidence

This section presents experimental evidence to provide an empirical test of the model’s
main predictions. The idea of the experiment is to create a choice environment where
the researcher observes subjects’ reports (allowing to estimate �) while at the same time
knowing the true state �. Accordingly, we can study whether our estimator is successful
in identifying subjects whose reports are relatively more informative than those of others.
In addition, we exogenously vary the quality of the signals that subjects receive about
true types. In particular, we run two treatments with either high or low signal quality
and test whether our estimator of � is capable of predicting subjects’ treatment status,
i.e., whether a subject received high- or low-quality signals. Such tests are difficult—if not
impossible—with non-experimental data, where true states are unknown to the researcher
and the precision of signals cannot be exogenously varied.

4.1 Design of the Experiment

To create a choice environment with known types � and an exogenous variation in knowl-
edge � , the experiment exposed subjects to a simple, repeated, and incentivized estimation
task. The setup mimics a panel data set where respondents are repeatedly asked to re-
spond to a set of different questions.

Types. The requirement that the researcher knows true types implies that we cannot
work with individual characteristics such as personality traits, preferences, or IQ, sim-
ply because these cannot be known with certainty. To implement types known to the
researcher (�i), we thus presented subjects a series of abstract figures. In particular, sub-
jects saw a total of 60 screens, each showing a stylized male figure of varying size (see
Figure 3). On each screen, the figure was randomly located at one of four different parts
of the screen, i.e., at either the upper left, the upper right, the lower left, or the lower right
part of the screen, respectively. The sizes of the figures were drawn from a normal distri-
bution that closely matches the actual height distribution of men in Germany (based on
data from the Socio-economic Panel, SOEP). In particular, sizes were matched into eleven
size categories (in meters) with likelihoods as shown in Table 2. For example, Category 3

Table 2: Choice categories

0 1 2 3 4 5 6 7 8 9 10

<1.56 1.56–
1.60

1.61–
1.65

1.66–
1.70

1.71–
1.75

1.76–
1.80

1.81–
1.85

1.86–
1.90

1.91–
1.95

1.96–
2.00 >2.00

0.1% 0.8% 3.8% 11.1% 21.1% 26.1% 21.1% 11.1% 3.8% 0.8% 0.1%

Note: top row: categories; middle row: sizes (in meters); bottom row: respective likelihoods.
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(a) Size within Category 2 (b) Size within Category 8
Note: The panel on the left shows a male figure with a height of 1.63m along with the elephant, which is
3.50m tall. The male figure on the right corresponds to 1.93m, and the cat has a height of 40cm. Animal
pictograms adapted with permission from Storey (2016).

Figure 3: Example screens

represents male persons of sizes between 1.66 and 1.70 meters, occurring with a likelihood
of 11.1%. Subjects received a handout showing this distribution and the corresponding
figures underneath (see the instructions in the Online Appendix).

Subjects were informed that a total of 15 distinct sizes were independently drawn from
the eleven categories and shown four times. Specifically, subjects saw four blocks, each
comprising these 15 distinct sizes. This procedure hence implements a panel structure,
i.e., for every subject i, we observe a total of 60 reports for K = 15 characteristics in
T = 4 periods. The location of the male figures was randomly determined for each screen.

To facilitate the estimation task and vary the presentation style of the screens, next to
the male figure, subjects also saw a “reference category,” i.e., either an elephant or a cat
(see Figure 3). Subjects were informed that—unlike for the male figures—the size of the
two animals was always exactly the same. The height of the elephant was 3.50 meters,
and it was 0.40 meters for the cat. Conditional on the randomly determined location of
the male figures, the location and type of the reference category (elephant or cat) were
also randomly drawn for each screen.

Payoff Function. Subjects had an incentive to estimate the shown size of the male
figure as precisely as possible. The payoff function, �, implements a quadratic loss function
and corresponds exactly to Equation (1) in the model, with

�(r) = − (r − �)2 ;
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where � indicates the true type (size of the male figure) and r a subject’s report. For the
payoff, one of the 60 screens was randomly selected. For the selected screen and respective
report, subjects received e10 minus the product of e0.10 and the squared difference
between the true type and the report. For example, if a subject was shown a male figure
of size Category 1 (1.56 meters – 1.60 meters) and estimated a size according to Category
8 (1.91 meters – 1.95 meters), the subject received e 10− (1−8)2×e 0:10 = e 5:10. Note
that we chose an endowment of e10 to rule out losses even if the difference between the
true and the estimated type was maximal.

Signal Precision and Treatments. To exogenously vary the precision � of the signal,
we ran two treatments that only differed in terms of how long subjects saw each of the
60 screens. In the treatment Long, subjects saw each screen for 7.5 seconds, in contrast
to treatment Short, where they saw each screen only for 0.5 seconds. Treatments were
randomly assigned within each lab session. Each subject participated in one treatment
condition only.

Procedural Details. 199 subjects—mostly undergraduate university students from all
majors—took part in the experiment, 101 subjects in the treatment Long and 98 in
the treatment Short. We used z-Tree as the experimental software (Fischbacher, 2007).
Subjects were recruited using the software hroot (Bock, Baetge, and Nicklisch, 2014).
At the beginning of an experimental session, participants received detailed information
about the rules and the structure of the experiment. In all treatments, the experiment
only started after all participants had correctly answered several control questions. The
experiments were run at the BonnEconLab in May 2019. For participation, subjects
received a show-up fee of e5.

4.2 Hypotheses and Results

Our experimental data are well suited for testing several hypotheses derived from our
model:

Hypothesis 1. Average reports are linear in true types and biased towards the population
average of the true types, i.e., towards five.

The first hypothesis follows from an optimal report being the weighted sum of the popula-
tion average �� and the received signal x (see Equation (2)). It can only be tested because,
in our experiment, we know the true type. Graphically, we would expect average reports
for different true types to lie on a straight line that is rotated clockwise around the point
(5; 5), i.e., we would expect upward bias for small true values, no bias for average true
values, and downward bias for large true values.
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Hypothesis 1 uses that knowledge � is finite for any subject. Hypotheses 2–4 ad-
ditionally exploit individual-specific information about � , either in terms of treatment
differences (Short vs. Long) or using the estimator introduced in Section 3.

Hypothesis 2. Estimates �̂ are larger for the subjects in the Long-treatment than for
those in the Short-treatment.

An implication of Hypothesis 2 is that the estimates for � should have reasonable power
for predicting subjects’ treatment status. Thus, we expect that we can blindfold ourselves
regarding the treatment status and be able to tell only from the patterns in answers to
which treatment a given subject was assigned.

Regardless of which approach is used to make inferences about � (the treatment status
or the estimator), the following further hypothesis should hold.

Hypothesis 3. The lower subjects’ level of knowledge � , the stronger the reports’ bias
towards the average value of the characteristic, i.e., five.

This hypothesis is a refinement of Hypothesis 1. It states that when estimating figure
sizes, subjects realize and take into account their individual-specific level of � , which may
reflect ability or treatment status.

Hypothesis 4. The higher the level of � in a given population, the stronger the predictive
power of reports for true types.

Hypothesis 4 is our main hypothesis. It states, in particular, that using reports of sub-
jects for whom we have high values of �̂ yields higher explanatory power of reports in
comparison to using either all subjects or subjects with low levels of �̂ .

Figure 4a provides a visual test of Hypothesis 1. It plots true types against observed
reports, pooled for both treatments. Gray bubbles represent average reports for given true
types, with their sizes reflecting the respective number of observations (which is largely
determined by the sampling distribution). Relative to the dotted 45-degree line, the fitted
ordinary least squares (OLS) line is rotated clockwise around the point (5; 5). Its slope
of 0.279 is significantly smaller than one, i.e., answers are biased towards the population
average (see Column 1 of Table 3 below for details).

To test the further hypotheses, we apply the estimator from Equation (7) to our
experimental data. Recall that a given subject saw each of the sizes that were drawn for
her exactly four times. Therefore, we treat the respective four answers given by a subject
as referring to the same characteristic. We hence observe K = 15 characteristics and
T = 4 waves.7 Figure 4b shows the distribution of �̂ , separately for the Short and the
Long-treatment (gray and transparent, respectively).

7The estimator uses the information that, e.g., signals 3, 18, 33, and 48 showed the same true type,
but it does not use the information what that type was.
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Figure 4: Results from the experiment

In support of Hypothesis 2, estimates of � are higher for subjects in the Long-treatment
than for those in the Short-treatment (p < 0:001, Mann–Whitney U test). Conversely, this
implies that our estimator predicts subjects’ treatment status. A simple probit regression
of an indicator variable for the Long-treatment on our estimates for � yields a significant
positive coefficient value (average marginal increase in the predicted probability = 0:37;
p < 0:001, two-sided).

For the tests of Hypotheses 3 and 4, we turn to Table 3. Column 1 corresponds to
the fitted line shown in Figure 4a, regressing reports on true types within the full sample.
Columns 2 and 3 replicate Column 1 separately for the two treatments, Short and Long.
In comparison with the pooled sample, the slope is flatter for the Short and steeper for
the Long-treatment. The three possible pairwise differences in slopes (full sample, Short-
treatment, and Long-treatment) are all statistically significant (p < 0:001, two-sided).
This is in line with a successful treatment manipulation of � and with Hypothesis 3. In
Columns 4 and 5, we split the sample by �̂ . As predicted, for subjects with above-median
values of �̂ , the estimated coefficient for the relationship between reports and true types
is larger than for below-median subjects (Column 4) and the whole sample (Column 1).
Again, all three possible pairwise differences are statistically significant (p < 0:001, two-
sided).8

To test Hypothesis 4, which states that the predictive power of reports for true types
should increase in a population’s level of � , we again draw on Table 3 and compare
the R2-values within the two pairs of sub-samples (Columns 2–5). The data confirm our
hypothesis: relative to the Short-treatment, the value of R2 in the Long-treatment is more
than doubled (comparison of Columns 2 and 3; p < 0:001, two-sided). For the two sub-

8Note that the difference between the sub-samples in Columns 4 and 5 is more pronounced than the
one between Columns 2 and 3: the coefficient in the low-τ sub-sample (Column 4) is smaller than the
one for the Short-treatment in Column 2 (p = 0.060, two-sided), and the high-τ coefficient in Column 5
is larger than the Long-treatment coefficient in Column 3 (p = 0.045, two-sided).
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Table 3: Relationship between reports and true types

Dependent variable: Report

Subjects all by treatment by τ̂

Short Long low high

(1) (2) (3) (4) (5)

True type 0.279��� 0.190��� 0.366��� 0.162��� 0.404���

(0.0167) (0.0169) (0.0260) (0.0138) (0.0250)

Constant 3.565��� 3.973��� 3.177��� 4.100��� 3.012���

(0.0799) (0.0859) (0.122) (0.0741) (0.116)

Observations 11940 5880 6060 5640 5640
Clusters 199 98 101 94 94
R2 0.134 0.0793 0.189 0.0491 0.243

�R2 139%, p < 0.001 394%, p < 0.001

Note: The table reports OLS estimates. The sample underlying Columns 4 and 5 excludes eleven subjects
for whom there exists no variation in answers and, therefore, no estimates for τ are available. The p-
values for the respective sizes of �R2 are each based on 10,000 permutations (Heß, 2017). Standard
errors clustered at the subject level in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

samples based on the estimator �̂ , the difference is even larger (comparison of Columns 4
and 5): the R2 for the above-median sample is about five times as large as the respective
R2 for the below-median subjects (p < 0:001, two-sided). In addition to supporting
our hypothesis, these comparisons show that the estimates �̂ are more informative than
knowledge about subjects’ treatment status. This is remarkable, given that our estimator
only uses the pattern of subjects’ responses. We conclude this section with a discussion
about two further analyses (i) using individual-level data and (ii) using survey items on
the quality of answers.

Individual-level Data. Recall that each subject in the experiment made 60 estimation
decisions. This means that we can run regressions of these 60 reports on the respective
true states separately for each individual. The resulting individual-specific value of R2

is informative about how well a subject is able to discriminate between different true
states, and it is therefore informative about � . Moreover, the individual slope parameter
reveals how much weight is assigned to signals, and thus it is informative about the
level of subjective knowledge, or confidence, ~� . Several observations can be made. First,
in individual-level regressions, the values of R2 and the slope parameters are strongly
positively related, with a rank correlation of 0.83 (p < 0:001, two-sided, N = 188).9

This positive correlation supports the central assumption of the model that agents with
more knowledge (measured in terms of R2) place more weight on their signals (measured in

9As in Table 3, the eleven subjects for whom there exists no variation in answers (all of them always
chose the answer “5”) have to be excluded.
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terms of coefficients). Second, the individual-level values of R2 allow us to further test the
validity of our estimator from Section 3, the latter not using information about the true
types. We find that the individual values of R2 are strongly correlated with the values of
�̂ : the rank correlation is 0.83 (p < 0:001, two-sided, N = 188). In fact, this relationship
can be analyzed even more thoroughly. In light of our model, the R2-values can be
transformed into alternative estimates of � according to the formula �̂alt. = R2= (1−R2).10

The Pearson correlation between the alternative estimates and our main estimates �̂ is
0.98 (p < 0:001, two-sided, N = 188). This finding is not mechanic, since the identification
approaches behind the two estimators rest on entirely different information in the data:
the R2-based measure uses the information about true states, while our main estimator
only uses information about which of the states are identical across the four waves.

Survey Items on Self-knowledge. We have argued that accounting for differences in
(self-)knowledge can help to improve estimates, and we have suggested an estimator based
on the pattern of behavior. An alternative to using this estimator could be to simply ask
respondents directly how accurate or reliable they think their responses are. The use of
such survey items appears to be fairly common. At the end of the experiment, we asked
two such items and can compare their discriminatory power to that of our estimates �̂ .
In particular, we asked subjects “how difficult” they thought the estimation task had
been and “how sure” they were about their answers. The answers to both questions were
provided on seven-point Likert scales. Reassuringly, responses to these two items are
strongly negatively correlated (� = −0:59; p < 0:001, two-sided). To obtain a single
measure, we take the first principal component of these two items. The rank correlation
between this measure of self-reported precision and our estimate of knowledge �̂ is only
0.05 and statistically insignificant (p = 0:46, two-sided, N = 188). However, the rank
correlation between self-reported precision and the individual-level values of R2 is also
just 0.08 (p = 0:29, two-sided, N = 188), i.e., very small and, in particular, much smaller
than the respective correlation of 0.83 between R2 and �̂ . These results suggest that—in
contrast to our estimator—, the survey items of self-reported precision contain only very
limited information.

5 Applications

In this section, we apply our estimator to data from the German Socio-economic Panel
(SOEP),11 a large, representative panel data set. The main objective is to show that by
using estimates of self-knowledge, �̂ , we can increase the explanatory power of regressions

10For the derivation, see the last paragraph of Appendix C.1.
11Socio-Economic Panel (SOEP), data for years 1984–2017, version 34, SOEP, 2019,

doi:10.5684/soep.v34.
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that involve self-reports. In particular, we estimate � using answers to the Big Five
personality inventory from multiple waves and split the relevant samples by the respective
median levels of �̂ , exactly as it was done in Section 4 for the data from the experiment
(see Table 3). We illustrate differences in explanatory power (R2) between the resulting
sub-samples in the context of risk preferences, using self-reported measures of individual
willingness to take risks. Following recent work on consequences and determinants of
risk preferences, we use the preference measures to explain economic outcomes (with risk
measures on the right-hand side) and explore determinants such as gender (with risk
measures on the left-hand side).

5.1 Data and Measures

Our measure of self-knowledge is constructed using the fifteen-item Big Five inventory
that was included in the 2005, 2009, 2013, and 2017 waves of the SOEP (Gerlitz and
Schupp, 2005). The respective questions are particularly suitable for our purposes since
they are meant and designed to cover independent traits that are stable over time (see,
e.g., Cobb-Clark and Schurer, 2012). We use the maximum number of waves available for
a given respondent, i.e., two waves for 47.4%, three waves for 22.1%, and four waves for
30.4% of the respondents (N = 21,157). The estimator introduced in Section 3 assumes
that types are identically distributed for different characteristics. Empirically, however,
the means and variances of answers might differ for different characteristics. Therefore,
we add the following modification to our estimation procedure:

1. We construct normalized responses nikt as the difference between agent i’s response
rikt and the average response �rk, divided by the standard deviation sk of agents’
average responses �rik for the given characteristic k.

nikt =
rikt − �rk

sk
; with sk =

vuut 1

I − 1

IX
i=1

(�rik − �rk)2

2. Analogous to Equation (7), we use the standardized answers to apply the following
estimator.

�̂POPi =
1

K�1

PK
k=1 (�nik − �ni)

2

1
K(T�1)�2

PK
k=1

PT
t=1 (nikt − �nik)

2
− 1

T
(10)

As we show in Appendix B.1, for I → ∞, this population-based estimator retains the
properties that were stated in the theorem in Section 3. In Appendix B.2, we also con-
sider the case that characteristics are correlated, with results showing that the estimator
remains informative.

Figure 5 shows the empirical distribution of �̂ in the SOEP sample. We see considerable
variation in these estimates, suggesting substantial heterogeneity in latent self-knowledge.
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Note: Distribution of τ̂ in the German SOEP. Estimates that are larger than ten (48 out of 21,157) are
not displayed.

Figure 5: Distribution of �̂ in the SOEP

The median value is 0.64, and for about 66% of respondents, the estimate �̂ is smaller
than one.

The main focus of this section is to show how empirical relationships between non-
cognitive skills and economic outcomes are attenuated due to limited self-knowledge.
However, the concept of self-knowledge might also be interpreted as an individual trait,
i.e., an interesting object in itself: high or low self-knowledge can be thought of as an
integral part of one’s personality, reflecting individual differences in life experience, cogni-
tive skills, or parental influence. Before turning to the main analyses, we therefore briefly
consider potential determinants of � , treating it as an individual trait.

In Table 4, we present results from regressions of estimated self-knowledge �̂ on a set
of plausibly exogenous determinants, in particular gender and age, as well as education.
As shown in Column 1, self-knowledge is very weakly correlated with gender, with an
R2 of virtually zero. With respect to age, Column 2 reveals a hump-shaped relationship
with self-knowledge. Descriptively, the latter increases until the age of about 43 years and
then declines. However, the coefficients and the values of R2 are fairly small. Given that
self-knowledge might reflect differences in cognitive skills, we also consider an association
with education (see Column 3). The correlation is significant and indicates that one more
year of education is, on average, associated with an increase of about 0.06 in the level of
self-knowledge. In Column 4, we regress estimated self-knowledge simultaneously on all of
the previously considered variables. Education seems to dominate, as becomes apparent
when comparing the values of R2 between the columns. However, even the combined
R2 of 0.033 is fairly low, suggesting that the estimates of self-knowledge contain much
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Table 4: Correlations with �

Dependent variable: τ̂

(1) (2) (3) (4)

Female -0.0286� -0.00105
(0.0139) (0.0151)

Age (in ’11) 0.0126��� 0.00822��

(0.00215) (0.00269)

Age2 (in ’11) -0.000148��� -0.0000971���

(0.0000207) (0.0000254)

Edu. years (in ’11) 0.0623��� 0.0598���

(0.00292) (0.00296)

Constant 0.926��� 0.696��� 0.139��� 0.0338
(0.0103) (0.0523) (0.0359) (0.0747)

Observations 20946 20946 16158 16158
R2 0.000 0.004 0.031 0.033

Note: The table reports OLS estimates. Individuals for whom τ̂ lies above the 99th percentile are
excluded. Age as well as years of education refer to the year 2011, i.e., the center of the relevant time
interval (2005–2017). Heteroskedasticity-robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001.

information above and beyond socio-demographic characteristics.
If self-knowledge is a trait, it might be intergenerationally transmitted, similar to,

e.g., risk aversion, trust, patience, and social preferences (Dohmen et al., 2012; Kosse and
Pfeiffer, 2012; Alan et al., 2017; Kosse et al., 2020). Such transmission could come from
various sources, e.g., imitation, exposure to similar social environments, or genetic dis-
positions. Among the SOEP participants for whom we have estimates of self-knowledge,
we can match 3,573 respondents to their mothers and 2,964 respondents to their fathers.
Figure 6 scrutinizes the relationship between parents’ estimated levels of self-knowledge
and the respective estimates for their children. For this purpose, each survey respondent
is assigned to the respective decile in the distribution of �̂ in the full sample. The figure
depicts the average deciles for children conditional on the respective parental deciles, sep-
arately for mothers (left panel) and fathers (right panel). As the corresponding regression
lines indicate, parents’ and children’s estimated levels of self-knowledge are positively re-
lated (p < 0:001, two-sided, separately for both cases). In terms of the precise underlying
values of �̂ (i.e., not in terms of deciles), the rank correlation between children and their
parents is 0.17 in the case of mothers and 0.16 for fathers.
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(a) From mother (b) From father
Note: Graphs plot average deciles to which children’s τ̂ belong for the deciles of τ̂ for mothers (left) and
fathers (right). Deciles refer to the full sample, i.e., thresholds are the same for parents and children.
The shaded areas around the regression lines represent 95% confidence intervals. Standard errors are
clustered at the level of the respective parents.

Figure 6: Intergenerational transmission of self-knowledge

5.2 Predicting Outcomes

To illustrate how accounting for individual estimates of �̂ can increase explanatory power
in the context of non-cognitive skills, we study the effect of risk attitudes on various
economic outcomes. Similar to the analysis of the experiment in Table 3, we split the
respective samples of SOEP respondents into two groups: individuals with either low self-
knowledge (below the median value of �̂) or high self-knowledge (above the median level
of �̂). This way, we refrain from imposing any functional form assumptions about how
self-knowledge affects the estimates. In light of the model and the experimental results,
we would expect to see larger explanatory power for the above-median sample than for
the below-median sample, reflected in larger values of R2.

Table 5 presents empirical results for three different economic outcomes related to risk
attitudes: holding risky financial securities, receiving performance-related pay, and smok-
ing. These outcomes were selected based on prior research, arguing that they should—and
actually are—related to risk attitudes (Dohmen and Falk, 2011; Dohmen et al., 2011).
The measures that we use to elicit risk attitudes are survey items that ask about will-
ingness to take risks in specific domains on eleven-point Likert scales. In particular, the
items refer to the willingness to take risks concerning one’s financial matters, career, and
health, respectively. Columns 1–3 show results from OLS regressions without further con-
trols, and Columns 4–6 replicate the analyses controlling for a set of socio-demographic
characteristics, namely (squared) age, gender, body height, years of education, parental
education, log net household income, log wealth, and log debts. Columns 1 and 4 consider
the full sample and confirm a positive and significant relationship between risk attitudes
and the respective outcomes.
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Table 5: Predictive power of domain-specific attitudes towards risk

Without controls Including controls

Sample: pooled below above pooled below above
(1) (2) (3) (4) (5) (6)

Dependent variable: Risky financial securities

Risk attitude 0.0698��� 0.0519��� 0.0863��� 0.0523��� 0.0383��� 0.0665���

(0.00264) (0.00359) (0.00369) (0.00280) (0.00383) (0.00398)
(Partial) R2 0.0827 0.0520 0.114 0.0498 0.0295 0.0737
Observations 9095 4548 4547 7472 3736 3736

�R2 119%, p < 0.001 150%, p < 0.001

Dependent variable: Performance pay

Risk attitude 0.0128��� 0.00808��� 0.0174��� 0.00977��� 0.00491 0.0150���

(0.00174) (0.00221) (0.00268) (0.00199) (0.00252) (0.00310)
(Partial) R2 0.00870 0.00412 0.0139 0.00487 0.00142 0.0101
Observations 5758 2879 2879 4464 2232 2232

�R2 238%, p = 0.03 610%, p = 0.02

Dependent variable: Smoking

Risk attitude 0.0199��� 0.0175��� 0.0229��� 0.0125��� 0.00923��� 0.0158���

(0.00154) (0.00220) (0.00216) (0.00175) (0.00248) (0.00246)
(Partial) R2 0.0119 0.00888 0.0166 0.00481 0.00258 0.00782
Observations 15162 7581 7581 11652 5826 5826

�R2 87%, p = 0.04 203%, p = 0.06

Note: The table reports OLS estimates, with binary dependent variables taking the values zero and one.
If not stated otherwise, all the data refer to the year 2009. Regressions are based only on respondents
who are 18 years or older, and those for performance pay include only respondents up to the age of 66
who work full-time and receive wages or salaries. Risky financial securities are, in the SOEP, a residual
category of securities without a fixed interest rate, like stocks or options (“other securities”). Since the
relevant question was asked on the household level in 2010, the units of observation in the respective
regressions are households in that year. Performance pay indicates that an employee receives payments
from profit-sharing, premiums, or bonuses. Smoking refers to 2010. The variable risk attitude in each of
the panels refers to the respective domain-specific question asked in the SOEP. The contexts are financial
matters for holding risky financial securities, career for performance pay, and health for smoking. The
controls used in Columns 4–6 are gender, age, squared age, body height in 2010, years of education,
parental education (whether mother and father each have either Abitur or Fachabitur), log net household
income, and log wealth and log debts of the current household in 2007. The last three variables are
calculated as ln(euro amount + 1). For the regressions involving risky financial securities, all variables
are averaged on the household level, and we base our data only on respondents for whom all information
is available individually. The p-values for the sizes of �R2 are each based on 10,000 permutations.
Heteroskedasticity-robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Our main interest concerns the pairwise comparisons between Columns 2 and 3 and
those between Columns 5 and 6, where we show results for individuals with estimated
levels of self-knowledge below and above the median. In all instances, the values of
R2 are higher for individuals with high self-knowledge than for individuals with low self-
knowledge, and the values for the full sample are between those for the two sub-samples.12

This holds both with and without controls included in the regressions (in the regressions
with controls, we refer to the partial R2). In all cases, the explanatory power among high
self-knowledge respondents is much larger than among the ones with low self-knowledge,
ranging from an 87% increase (smoking, without controls) up to an increase of 610%
(performance pay, with controls). As the respective p-values show, the differences in
explanatory power are statistically significant. We note that these results hold for a non-
cognitive skill—risk attitude—that is different and mostly unrelated to the set of traits
that we used to estimate �̂ (the Big Five). This suggests that self-knowledge does, in fact,
generalize to different aspects of people’s personalities.

5.3 Determinants of Preferences

An active literature seeks to uncover the individual determinants of preferences and per-
sonality (e.g., Sutter and Kocher, 2007; Croson and Gneezy, 2009; Falk et al., 2018).
Understanding how, e.g., age and gender affect preferences is not only interesting in itself.
It is also relevant for gaining a better understanding of group-specific outcomes, such as
gender differences with respect to sorting into competitive environments, wage gaps, and
occupational choice, to give just one example (see, e.g., Niederle and Vesterlund, 2007;
Croson and Gneezy, 2009; Dohmen and Falk, 2011; Buser, Niederle, and Oosterbeek,
2014). Here, we use differences in domain-specific risk attitudes associated with gender
and height to illustrate that when accounting for differences in self-knowledge, exogenous
determinants of preferences may actually have higher explanatory power and yield larger
effect sizes than typically inferred.

Table 6 reports the differences associated with gender and body height for two different
measures of risk attitudes, both based on the 2009 wave of the SOEP and standardized
according to the pooled samples used in Column 1.13 One measure is the so-called general
risk question, asking about the willingness to take risks “in general” and measured on an
eleven-point Likert scale, while the other is the first principal component of five domain-
specific risk questions, referring to car driving, financial matters, sports/leisure, career, as
well as health. Replicating previous findings,14 women tend to be less willing to take risks
than men, and taller people tend to be more willing to take risks than smaller individuals.
Our interest here is to compare samples with high vs. low levels of self-knowledge, as

12In Appendix C, we discuss how to interpret differences in the estimated coefficients.
13Individuals’ height again refers to 2010, due to availability of data.
14See in particular Dohmen et al. (2011) but also Croson and Gneezy (2009) and Falk et al. (2018).
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Table 6: Differences in risk attitudes

Unweighted Weighted

Sample: pooled below above below above
(1) (2) (3) (4) (5)

General risk question

Female -0.374∗∗∗ -0.348∗∗∗ -0.400∗∗∗ -0.350∗∗∗ -0.410∗∗∗
(0.0153) (0.0218) (0.0214) (0.0219) (0.0221)

R2 0.0348 0.0297 0.0404 0.0305 0.0416
Observations 16654 8327 8327 8327 8327

�R2 36%, p = 0.05 36%, p = 0.05

Height (in ’10) 0.0219∗∗∗ 0.0202∗∗∗ 0.0236∗∗∗ 0.0196∗∗∗ 0.0249∗∗∗
(0.000864) (0.00121) (0.00124) (0.00122) (0.00127)

R2 0.0425 0.0349 0.0502 0.0333 0.0556
Observations 15134 7567 7567 7567 7567

�R2 44%, p = 0.02 67%, p < 0.01

Domain-specific risk questions: first principal component

Female -0.433∗∗∗ -0.401∗∗∗ -0.463∗∗∗ -0.405∗∗∗ -0.477∗∗∗
(0.0164) (0.0238) (0.0226) (0.0238) (0.0236)

R2 0.0469 0.0390 0.0558 0.0402 0.0578
Observations 14160 7080 7080 7080 7080

�R2 43%, p = 0.02 44%, p = 0.02

Height (in ’10) 0.0271∗∗∗ 0.0252∗∗∗ 0.0284∗∗∗ 0.0243∗∗∗ 0.0305∗∗∗
(0.000947) (0.00133) (0.00135) (0.00135) (0.00138)

R2 0.0648 0.0532 0.0750 0.0498 0.0855
Observations 12858 6429 6429 6429 6429

�R2 41%, p = 0.01 72%, p < 0.001

Note: The table reports OLS estimates. All regressions only use respondents who are 18 years or older.
The dependent variables are standardized among the respondents who enter the corresponding regression
in Column 1. Columns 4 and 5 use inverse probability weights that come from probit regressions of group
assignment on gender, a second-order age polynomial, and years of education. Except for height, all data
refer to the year 2009. The p-values for the respective sizes of �R2 are each based on 10,000 permutations.
Heteroskedasticity-robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

shown in Columns 2 and 3. In all four instances, we consistently find that explanatory
power, measured in terms of R2, is larger among high-� individuals than among low-�
individuals. These differences are substantial, ranging from 36% to 44%. The p-values for
differences in explanatory power imply statistical significance. An inspection of estimated
coefficients further shows that the size of coefficients is always (absolutely) larger for the
above-median sample than for the below-median sample. Increased effect sizes are at odds
with classical measurement error but in line with the predictions of our model. They also
mimic the results from our stylized experiment in Section 4, where we saw a steeper
slope between reports and true states for high-� relative to low-� subjects (see Table 3,
Columns 4 and 5).

A potential concern regarding the interpretation of the above results is selection. The
latter would imply that the observed patterns reflect that the true explanatory power, as
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well as true coefficients, are actually larger among respondents with high self-knowledge.
In principle, we cannot rule out such an interpretation with non-experimental data. How-
ever, recall from Table 4 that the effects of socio-demographic characteristics on �̂ were
rather small. It is therefore unlikely that selection plays a major role in our findings.
Still, we address this issue explicitly in Columns 4 and 5 by restoring representativeness
with respect to observable characteristics using inverse probability weighting. We esti-
mate probit models in which we regress group assignment (below or above median) on
gender, a second-order age polynomial, and years of education (all as of 2009). We then
invert the predicted probabilities and use them as weights, otherwise replicating the re-
gression from Columns 2 and 3. The results change very little and even tend to become
slightly stronger.15 Thus, the findings suggest that individuals with relatively high levels
of self-knowledge do, in fact, contribute more to our understanding of the determinants
of non-cognitive skills than their low-� counterparts.

We conclude this section with a brief discussion of the differences associated with gen-
der and height in the Big Five personality traits. Table 11 in Appendix D.2 is constructed
analogously to Table 6 but analyzes the Big Five rather than risk attitudes. It shows that
both effects—higher explanatory power and larger effect sizes for high-� relative to low-�
individuals—are also observed for the Big Five Inventory. As an example, take conscien-
tiousness, which is considered one of the most important personality traits for explaining
educational and labor market outcomes (Judge et al., 1999; Hogan and Holland, 2003;
Almlund et al., 2011) as well as health and mortality (see, e.g., Bogg and Roberts, 2004;
Hill et al., 2011). The comparison of Columns 2 and 3 shows that the gender difference
is almost three times as large for the high-� compared with the low-� individuals and
that the difference in R2 amounts to more than 500%.16 This also suggests the possibility
that treatment effects of childhood interventions on personality traits (see Heckman and
Kautz, 2012) could be even larger than previously assumed.

6 Conclusion

In this paper, we have suggested a theoretical framework of survey response behavior. We
assume that respondents try to provide accurate answers but lack perfect self-knowledge.
In addition, survey responses may be affected in terms of subjective scale use, inaccurate
beliefs about one’s self-knowledge, differences in the endogenous precision of reports, as
well as image or social desirability effects. The framework is kept deliberately simple but

15A corresponding procedure can, of course, also be applied in the context of the differences in predictive
power that were analyzed in Table 5. Although given the controls that are used, it seems less needed
at that point, we still report the corresponding results in Table 10 in Appendix D.1. The effect sizes
decrease a bit, but the results still support the earlier conclusions.

16For the Big Five, we can also show that Cronbach’s alpha, a common psychometric measure for scale
consistency, is higher among respondents with high (above-median) levels of τ̂ . Among low-τ̂ respondents
in the SOEP, the average across the five facets is 0.50, while it is 0.67 among high-τ̂ respondents.
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could be extended to allow for a richer and more realistic analysis of survey response
behavior. For example, we assume that the outcome of inspecting one’s individual char-
acteristics is simply an (exogenous) signal about one’s type. It would be interesting to
explore cognitive (and emotional) processes involved in this introspection process in more
detail, e.g., the role of limited memory and retrieval, how individuals select represen-
tative choice contexts to evaluate their characteristics, or how social comparison or life
experience affect introspection. The framework also allows for integrating the role and
meaning of response times, which could hold strong practical importance. For example,
many binary choice experiments in neuroscience and psychology find that accuracy de-
creases with response time, in the sense that slower decisions are less likely to be correct
(Swensson, 1972; Luce, 1986; Ratcliff and McKoon, 2008).17 An interesting question is
how one can integrate response times into our approach to facilitate the identification of
precise responses.

We note that while we have interpreted the model in terms of survey response be-
havior, it can be applied to any elicitation method where subjects make a decision, i.e.,
in particular to lab and field experiments. For instance, in typical choice experiments to
elicit risk or time preferences, the same issues that we discuss in the context of survey
responses also arise. In fact, a main difference in experiments is the provision of incen-
tives, which may increase the accuracy of responses (see Section 2.2.1) but do not solve
the issues of limited self-knowledge (in the sense of introspective ability), scale use, or
social desirability.

A better understanding of the survey response process may also inform the “optimal”
design of research. Conditional on survey respondents’ behavior, we can ask the question
of how surveys or other elicitation methods should be designed to extract a maximum
amount of information. Such a design perspective would consider research as a principal–
agent relationship where agents participate in surveys, experiments, or related research
contexts that are designed by researchers who optimize research paradigms conditional
on agents’ behaviors. Such an approach could be used to investigate how to design survey
items and response scales, when and how incentives should be given, or how to design
specific modules meant to correct for expected biases.

A key insight of the model is that we can extract individual differences in self-
knowledge based on response patterns, in particular by using the ratio of the variance
between characteristics and the variance for a given characteristic over time. Building
on this finding, we suggest a consistent and unbiased estimator of self-knowledge, discuss
its properties, and apply it to experimental data as well as a large panel data set. We
show that the estimator reliably identifies individual differences in the informativeness of
answers in the laboratory context where we know true states. Splitting the lab sample

17Fudenberg, Strack, and Strzalecki (2018) and Alós-Ferrer, Fehr, and Netzer (2021) provide theoretical
analyses of the relationship between response times and the accuracy of binary decisions.
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into individuals giving answers with high vs. low quality, we further show that reports are
much closer to true states for the former than for the latter part of the sample. Repeating
the same exercise using a representative panel data set and risk attitudes as an example
for non-cognitive skills, we show that for subjects with a high level of self-knowledge,
the explained variance is significantly higher than for individuals with low levels of self-
knowledge. This holds for regressions where risk attitudes are on either the left- or the
right-hand side of the regression equation. These applications illustrate the potential of
distinguishing between respondents with high vs. low self-knowledge for improving survey
evidence. They suggest further econometric implications for the study of measurement
error and highlight the potential of integrating self-knowledge into regression frameworks.
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Appendix A Proofs

Proof of Lemma 1. Following the result from Equation (2), the optimal report for any
given level of precision and signal is given by

r =
�� + � x

1 + �
:

Plugging into Equation (2.2.1) yields that the utility of the agent given the optimal
response above equals

u�(r; �) = − m

(1 + �)2

�
�� − � + � (x− �)

�2 − �

a

and, consequently, the agent chooses her precision � to maximize

E[u�(r; �)] = − m

(1 + �)2

�
E
h�

�� − �
�2
i

+ � 2E
�
(x− �)2��− �

a

= − m

(1 + �)2

�
�2 + � 2�

2

�

�
− �

a
= −m�2

1 + �
− �

a
:
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Since E[u�(r; �)] is strictly concave in r, the first-order condition yields the optimal level
of effort for an interior solution.

0
!

=
@ E[u�(r; �)]

@ �
=

m�2

(1 + �)2 −
1

a
⇒ � � =

√
ma� − 1

Proof of the theorem. We will prove the result in the more general setting with sub-
jective self-knowledge and scale use as introduced in Sections 2.2.2 and 2.2.3, respectively.
The case without subjective self-knowledge and scale use stated in the basic version of
the model corresponds to the special case where ~�i = �i and �i = 1.

Throughout the proof, we fix �i; ~�i > 0 and �i ∈ (0; 1]. The answer of agent i when
asked for the tth time about the kth characteristic is given by

rikt = (1− �i) c+ �i
�� + ~�i xikt

1 + ~�i
:

By assumption, there exist independent, standard normally distributed random variables
�ikt; �ik such that

xikt = �ik +
�
√
�i
�ikt ;

�ik = �� + � �ik :

Plugging into the equation for the agent’s responses yields that

rikt = (1− �i) c+ �i

�
�� +

~�i
1 + ~�i

�

�
�ik +

�ikt√
�i

��
: (11)

Denote agent i’s average answer for question k by �rik = 1
T

PT
t=1 rikt, her average answer

over all questions by �ri = 1
K

PK
k=1 �rik, and similarly �xik = 1

T

PT
t=1 xikt, ��ik = 1

T

PT
t=1 �ikt,

�xi = 1
K

PK
k=1 �xik, ��i = 1

K

PK
k=1 ��ik, and ��i = 1

K

PK
k=1 ��ik. We have that

rikt − �rik
�i

=
~�i

1 + ~�i
(xikt − �xik) =

~�i
1 + ~�i

�
√
�i

(�ikt − ��ik) : (12)

Similarly, we get that

�rik − �ri
�i

=
~�i

1 + ~�i
(�xik − �xi) =

~�i
1 + ~�i

��
�ik +

�
√
�i

��ik
�
−
�
��i +

�
√
�i

��i
��

=
~�i

1 + ~�i

��
�ik − ��i

�
+

�
√
�i

�
��ik − ��i

��
=

~�i
1 + ~�i

�
�
�
�ik − ��i

�
+

�
√
�i

�
��ik − ��i

��
:

(13)
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We first show that

A :=
(1 + ~�i)

2

~� 2
i �

2
�i

KX
k=1

TX
t=1

�
rikt − �rik

�i

�2

is �2 distributed with K(T − 1) degrees of freedom. It follows from Equation (12) that

A =
KX
k=1

TX
t=1

(�ikt − ��ik)
2 :

We have that Ak :=
PT

t=1 (�ikt − ��ik)
2 is �2 distributed with T − 1 degrees of freedom

as it equals the sum of the squared distance of i.i.d. normals from the mean. As Ak; Ak0

are independent for k0 6= k and A =
PK

k=1Ak, it follows that A is �2 distributed withPK
k=1(T − 1) = K(T − 1) degrees of freedom.
We next argue that

B :=
(1 + ~�i)

2

~� 2
i �

2

1

1 + 1
T�i

KX
k=1

�
�rik − �ri
�i

�2

is �2 distributed with K − 1 degrees of freedom. It follows from Equation (13) that

B =
KX
k=1

�
�ik − ��i

�2

where �ik = 1q
1+ 1

T�i

(�ik + 1p
�i

��ik). As

var(�ik) =
var(�ik) + 1

�i
var(��ik)

1 + 1
T�i

=
1 + 1

�i
var
�

1
T

Pt
t=1 �ikt

�
1 + 1

T�i

= 1 ;

the random variables (�ik)k2f1;:::;Kg are i.i.d. standard normal random variables. Again, as
�ik; �ik0 are independent for k 6= k0, it follows that B is �2 distributed with K − 1 degrees
of freedom.

Next, recall that for the Normal distribution, the sample variance 1
T�1

PT
t=1 (�ikt − ��ik)

2

is independent of the sample mean ��ik. As � is independent of � it follows thatPT
t=1 (�ikt − ��ik)

2 and �ik = 1q
1+ 1

T�i

(�ik + 1p
�i

��ik) are independent. This implies that

A and B are independent. As A and B are independently �2 distributed it follows that

Fi :=
1

K�1
B

1
K(T�1)

A

follows an F -distribution with parameters K − 1 and K(T − 1).18 Recall that in Equa-
18See https://en.wikipedia.org/wiki/F-distribution#Characterization (accessed on June 17,

2021).
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tion (7), we defined �̂i.

�̂i =
1

K�1

PK
k=1 (�rik − �ri)

2

1
K(T�1)�2

PK
k=1

PT
t=1 (rikt − �rik)

2
− 1

T

Plugging in the definition of A and B yields that

�̂i +
1

T
=
K(T − 1)− 2

K(T − 1)

1
K�1

PK
k=1

�
r̄ik�r̄i
�i

�2

1
K(T�1)

PK
k=1

PT
t=1

�
rikt�r̄ik

�i

�2

=
K(T − 1)− 2

K(T − 1)

1
K�1

B
�̃2
i �

2

(1+�̃i)2

�
1 + 1

T�i

�
1

K(T�1)
A

�̃2
i �

2

(1+�̃i)2
1
�i

=
K(T − 1)− 2

K(T − 1)
× �i

�
1 +

1

T�i

�
×

1
K�1

B
1

K(T�1)
A

=
K(T − 1)− 2

K(T − 1)
×
�
�i +

1

T

�
× Fi :

This establishes the first part of the theorem, i.e., Equation (8). Part 2 of the Theorem
follows as E [Fi] = K(T�1)

K(T�1)�2
.19 Part 3 follows as

var(Fi) = E [Fi]
2 2((K − 1) +K(T − 1)− 2)

(K − 1)(K(T − 1)− 4)
:

To prove Part 4, observe that Equation (9) is decreasing in T , and thus an upper bound
is given by setting T = 2.

p
E[(�̂i − �i)2 | �i] ≤

�
�i +

1

2

�s
2((K − 1) +K − 2)

(K − 1)(K − 4)
=

�
�i +

1

2

�s
4K − 6

(K − 1)(K − 4)

≤
�
�i +

1

2

�r
4

K − 4
= (2�i + 1)

1√
K − 4

:

This establishes the result. Finally, we note that this result immediately extends to the
case of endogenous effort introduced in Section 2.2.1, where for agent-specific ability ai
and incentives mi, the precision is endogenously chosen as �i =

√
mi ai � − 1.

19See https://en.wikipedia.org/wiki/F-distribution (accessed on June 17, 2021).
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Appendix B Robustness of the Estimator

B.1 Characteristics with Different Averages and Variances

The estimator introduced in Section 3 assumes that the population means and variances
of types are identical for all of theK characteristics that are being used. Empirically, how-
ever, this is usually not the case (at least not exactly). For this reason, we next describe
a generalization of the estimator derived in Section 3 to the case where the population
mean ��k and variance �2

k of each characteristic k is potentially different. We make no
assumption about the distribution of these population means and variances, but maintain
the assumption that the agent’s prior belief equals the distribution of characteristics in
the population and that characteristics are independent. Throughout, we maintain the
assumption of no scale use, i.e., �i = 1.

Fix an infinite sequence of levels of perceived and objective self-knowledge of the
respondents, �1; �2; : : : and ~�1; ~�2; : : :, respectively. We denote by

C :=
1

I

IX
i=1

�
~�i

1 + ~�i

�2 �
1 +

1

T�i

�
and note that C is a non-negative constant independent of any specific characteristic.
Throughout, we assume that each agent’s self-knowledge �i is bounded from below by �
which implies that C is bounded by C ≤ 1 + 1

T�
. There exist i.i.d. standard normally

distributed random variables (�ikt)ikt and (�ik)ik such that

xikt = �ik +
�k√
�i
�ikt ;

�ik = ��k + �k�ik :

We get that (without scale use) the agent’s response when asked for the tth time about
characteristic k is then given by

rikt =
��k + ~�i xikt

1 + ~�i
= ��k +

~�i
1 + ~�i

(xikt − ��k) = ��k +
~�i

1 + ~�i
�k

�
�ik +

1√
� i
�ikt

�
:

We define the average response by agent i to question about characteristic k as �rik =
1
T

PT
t=1 rikt and as �rk = 1

I

PI
i=1 �rik the average response to question k.

Lemma 2. The average response to question k is normally distributed with mean ��k and
variance

var(�rk) =
�2
k

I
C :

Furthermore, limI!1 �rk = ��k almost surely.

Proof. As � and � are normally distributed with mean zero it follows that �rk is normally
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distributed and has mean ��k. We are thus left to compute the variance of �rk. We define
��ik = 1

T

PT
t=1 �ikt as the average signal shock of agent i for characteristic k. As �ik and ��ik

are independent across agents, we have that

var(�rk) =
1

I2

IX
i=1

var(�rik) =
1

I2

IX
i=1

var

 
��k +

~�i
1 + ~�i

�k

�
�ik +

1√
� i

��ik

�!

=
�2
k

I2

IX
i=1

�
~�i

1 + ~�i

�2

var
�
�ik +

1√
� i

��ik

�

=
�2
k

I2

IX
i=1

�
~�i

1 + ~�i

�2�
1 +

var(��ik)
�i

�
=
�2
k

I2

IX
i=1

�
~�i

1 + ~�i

�2
 

1 +
1
T 2

PT
t=1 var(�ikt)
�i

!

=
�2
k

I2

IX
i=1

�
~�i

1 + ~�i

�2�
1 +

1

T�i

�
:

The almost sure convergence follows from Kolmogorov’s strong law of large numbers for
independently but not identically distributed random variables.

Similarly, we define the variance in responses to question k as

s2
k =

1

I − 1

IX
i=1

(�rik − �rk)
2 :

Lemma 3. We have that the expected sample variance converges almost surely

lim
I!1

s2
k = �2

k C :

Proof. As limI!1 �rk = ��k a.s., the sample variance a.s. satisfies

lim
I!1

s2
k = lim

I!1

1

I − 1

IX
i=1

�
(�rik − ��k)

2 + (��k − �rk)
2 + 2(�rik − ��k)(��k − �rk)

�
= lim

I!1

1

I − 1

IX
i=1

�
(�rik − ��k)

2 + (��k − �rk)
2
�

= lim
I!1

I

I − 1

"
(��k − �rk)

2 +
1

I

IX
i=1

(�rik − ��k)
2

#
:

As I=(I − 1) converges to 1 and (��k − �rk)
2 converges to zero almost surely, we get that

almost surely

lim
I!1

s2
k = lim

I!1

1

I

IX
i=1

(�rik − ��k)
2 :
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Note that �rik − ��k is independently normally distributed with mean zero and variance

�2
k

�
~�i

1 + ~�i

�2�
1 +

1

T�i

�
:

Thus, we get that

E[(�rik − ��k)
2] = �2

k

�
~�i

1 + ~�i

�2�
1 +

1

T�i

�
and

var
�
(�rik − ��k)

2
�

= 2�4
k

�
~�i

1 + ~�i

�4�
1 +

1

T�i

�2

≤ 2�4
k

�
1 +

1

T�

�2

:

As the variance of
�
�rik − ��k

�2 is bounded, we can apply Kolmogorov’s strong law of large
numbers and get that

lim
I!1

s2
k = lim

I!1

1

I

IX
i=1

(�rik − ��k)
2 = lim

I!1

1

I

IX
i=1

�2
k

�
~�i

1 + ~�i

�2�
1 +

1

T�i

�
= �2

kC :

We define the normalized response nikt as the difference between agent i’s response
and the average response, divided by the standard deviation of agents’ average responses
for the given characteristic k, i.e.

nikt =
rikt − �rk

sk
:

Together Lemma 2 and 3 imply the following result.

Lemma 4. The normalized responses times
√
C almost surely converge in the number of

agents to

lim
I!1

√
C nikt =

~�i
1 + ~�i

�
�ik +

1√
� i
�ikt

�
(14)

We observe that the above asymptotic distribution for I → ∞ of the normalized
responses multiplied by

√
C does not depend on scale use or the means and variances

of characteristics. Moreover, the comparison of Equations (14) and (11) shows that the
normalized responses are distributed exactly as if the respondents’ scale use parameters
�i equaled one, all means ��k were zero, and the variances �2

k of characteristics all took the
value of 1=C. We define the population-based estimator as

�̂POPi =
1

K�1

PK
k=1 (�nik − �ni)

2

1
K(T�1)�2

PK
k=1

PT
t=1 (nikt − �nik)

2
− 1

T
: (15)

The proof given for the theorem now yields the following result:

Proposition. For every K;T that satisfy K(T − 1) > 4.
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Table 7: Accuracy of estimates with different means and variances

(1) (2) (3) (4) (5)

I (respondents) 100 10,000 100 100 100
K (characteristics) 15 15 50 15 50
T (waves) 3 3 3 10 10

Correlation 0.68 0.68 0.87 0.76 0.91
Rank correlation 0.76 0.77 0.90 0.82 0.93
Median split 79% 80% 88% 83% 90%

1. The estimator �̂POPi satisfies almost surely

lim
I!1

�̂POPi =

�
�i +

1

T

�
K(T − 1)− 2

K(T − 1)
Fi −

1

T
(16)

for some random variable Fi that is F distributed with K − 1; K(T − 1) degrees of
freedom for every fixed vector of parameters �i; �; ��.

2. �̂POPi is a consistent estimator for �POPi , i.e., limI!1 E
�
�̂POPi

�� �i� = �i almost
surely.

3. The standard error of the estimator �̂POPi in large populations is given by

lim
I!1

q
E[(�̂POPi − �i)2 | �i] =

�
�i +

1

T

�s
2((K − 1) +K(T − 1)− 2)

(K − 1)(K(T − 1)− 4)
: (17)

4. �̂POPi converges to �i at the rate 1=
p
K in the number of attributes, and for all K > 4

satisfies the following upper bound independent of the number of repeated observa-
tions T

lim
I!1

q
E[(�̂POPi − �i)2 | �i] ≤

2�i + 1√
K − 4

:

The properties of the population-based estimator are now asymptotic and do not
necessarily hold in small samples. However, the only dimension of the sample size that is
relevant for convergence is the number I of respondents. While, in most applications, the
number of characteristics and waves (K and T , respectively) will probably be limited, the
number of respondents is usually fairly large. The asymptotic properties might, therefore,
be a realistic approximation of the actual behavior of the population-based estimator in
many relevant contexts, as we illustrate with the simulation results below.

The table replicates Table 1, aside from that the means of the characteristics that
are assumed. The means �� are independently drawn from a Normal distribution with a
mean of 5 and a standard deviation of 1. The standard deviations of characteristics, �,
are drawn from a log-normal distribution with the parameters −1=2 and 1, such that the
expected standard deviation still equals one. A comparison of the result shows that the
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performance is almost identical to the case with equal means. This even holds for the
cases where the simulated number of respondents is just 100, a sample size that most
studies exceed.

B.2 Correlated Characteristics

We choose the Big Five inventory for estimating self-knowledge because, by design, the
five measured traits are close to statistical independence. However, the five traits are
each measured with a set of three survey items, which among each other are correlated.
This does not impede the logic behind our estimator: subjects with high self-knowledge
should give similar answers over time to the same questions, and they should give different
answers to questions about different traits. What does not hold here is that estimates are
necessarily unbiased. In the stylized experiment presented in Section 4, all assumptions
of the estimator were fulfilled, and yet unbiasedness was not the important property that
we used for the results in Table 3. Instead, we relied on sample splits, i.e., our aim was to
sort subjects according to how much information about the true type was entering their
reports. Our interest here is the same, and the estimator remains informative. To gain
a better understanding of how correlations in characteristics influence our estimates, we
replicate the simulation results from Table 1 with the following modifications: we impose
that characteristics are correlated in the same way as answers to the 15 Big Five questions
in the 2009 wave of the SOEP, and we replicate all the columns that use 15 characteristics.

Table 8: Accuracy of estimates with correlated characteristics

(1) (2) (3)

I (respondents) 100 10,000 100
K (characteristics) 15 15 15
T (waves) 3 3 10

Correlation 0.65 0.64 0.72
Rank correlation 0.74 0.74 0.80
Median split 78% 78% 81%
Bias -0.19 -0.19 -0.19

The results are reported in Table 8, whose columns are identically constructed as
Columns 1, 2, and 4 in Table 1. The main result is that the fraction of respondents who
are correctly classified as having below- or above-median self-knowledge decreases only by
about two percentage points, i.e., the informativeness of the median-splits remains.

Appendix C Implications for OLS Estimates

In the analyses presented in the paper, we concentrate on OLS regressions, where the
relevant self-report serves either as the dependent or as an independent variable. To
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facilitate understanding of our results, we first summarize the effects that we would expect
from � in the light of our model. Table 9 provides a schematic overview of the effects that
our model of survey responses predicts for regression coefficients estimated with OLS,
formulated in terms of attenuation (bias towards zero; −) and amplification (bias away
from zero; +). The two columns of the table differentiate between the cases of the report
being used as the dependent variable (left-hand side of the equation) or as an independent
variable (right-hand side of the equation). The respective other variable is assumed to
be measured without error. In the upper panel, we distinguish between two channels
through which a decrease in � affects estimates: first, increased zero-mean noise around
the expected answer, and second, bias in answers towards the population mean due to
reduced confidence in one’s signals. The lower panel presents the total effects for the three
cases of ~� < � , ~� = � , and ~� > � (see Section 2.2.2).

Table 9: Effect of reduction in self-knowledge � on OLS estimates

Report as: dependent variable independent variable

Effect through:
increased noise none (◦) attenuation (−)
decreased ~� attenuation (−) amplification (+)

Overall effect with:
~� < � −− +
~� = � − ◦
~� > � −=◦ −

C.1 Self-reports as the Dependent Variable

For the report as the dependent variable, it is well known that increased noise per se does
not introduce any bias, as stated in the respective table cell. However, in our context,
reduced confidence leads to attenuation bias, as we have already seen in the experimental
results (see Figure 4a). Formally, assume that we want to estimate the following equation:

�i = �0 + �1 yi + �i ;

where yi is the respective realization of the independent variable and �i is an i.i.d. error
term with an expected value of zero that is independent of yi and the signals that subjects
receive. Crucially, the value �i is not observable and instead replaced with the response
ri. To gain a deeper insight into the forces behind the composite effect, we use the
notation involving subjective self-knowledge (see Section 2.2.2). The asymptotic result of
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the standard OLS estimator is derived below.

�̂1 =
\cov(ri; yi)

\var(yi)
p→ cov(ri; yi)

var(yi)
=

E[(ri − �r) (yi − �y)]

E
�
(yi − �y)2� =

E
�
�̃(xi��̄)

1+�̃
(yi − �y)

�
E
�
(yi − �y)2�

=
~�

1 + ~�

E
��
xi − �i + �i − ��

�
(yi − �y)

�
E
�
(yi − �y)2� =

~�

1 + ~�

E[(xi − �i + �1 (yi − �y) + �i) (yi − �y)]

E
�
(yi − �y)2�

=
~�

1 + ~�

E[�1 (yi − �y) (yi − �y)]

E
�
(yi − �y)2� =

~�

1 + ~�
�1

�̂0
p→ �� − �1 �y = �0 + �1 �y − ~�

1 + ~�
�1 �y = �0 +

�
1− ~�

1 + ~�

�
�1 �y

Thus, as long as a decrease in � is accompanied by a decrease in ~� , the overall effect on
the absolute value of the slope parameter �1 is strictly negative.

An Estimator for � Based on Known True States. Suppose we know that � is
constant in the relevant population, or, alternatively, that all answers were given by the
same individual. Suppose also that we know the true states, and we use them as the
independent variable, i.e., yi = �i for all i. It follows that �0 = 0, �1 = 1, and �y = ��. For
predicted answers, it follows that
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For the model fit, it holds that
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Rearranging yields that R2=1�R2 is a consistent estimator for � .

C.2 Self-reports as the Independent Variable

For the report as an independent variable, noise in the sense of classical measurement er-
ror is well known to induce attenuation bias. However, reduced subjective self-knowledge
works as a counter-force, inducing amplification, i.e., making the slope of the regression
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line steeper. To see the intuition, consider a regression line fitted through just two data
points with coordinates (r1; z1) and (r2; z2). The point estimate for the regression coeffi-
cient is then given by (z2 − z1) = (r2 − r1). Reduced subjective self-knowledge attenuates
the absolute difference between r1 and r2, thereby increasing the estimate. Formally,
assume that we want to estimate the unknown coefficients of the following equation:

zi = 0 + 1 �i + �i ;

where zi is the respective realization of the dependent variable and �i an i.i.d. error
term with an expected value of zero that is independent of both �i and the signals that
subjects receive. Again, the unknown true values �i are replaced with reports ri, and the
asymptotic result of the standard OLS estimator is derived below.

̂1
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The overall effect of a reduction in � for the report as the independent variable is thus
ambiguous. As it turns out, for subjects that are correctly specified about their self-
knowledge as assumed in our benchmark model, the effects cancel out exactly. If a reduc-
tion of � results in an excess of subjective self-knowledge, estimates are attenuated. In
the opposite case, the reverse applies and estimates are amplified.

In sum, contrary to economists’ typical understanding of the effects of measurement
error in the context of OLS, our model suggests that for responses from surveys, error in
an independent variable might not always induce “innocent” attenuation bias but perhaps
no bias at all or even amplification and that it always induces attenuation bias when
reports are used as the dependent variable.
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Appendix D Robustness tests

D.1 Accounting for Selection

Table 10: Predictive power of domain-specific attitudes towards risk, with inverse proba-
bility weighting

Without controls Including controls

Sample: pooled below above pooled below above
(1) (2) (3) (4) (5) (6)

Dependent variable: Risky financial securities

Risk attitude 0.0698��� 0.0570��� 0.0826��� 0.0523��� 0.0425��� 0.0616���

(0.00264) (0.00380) (0.00385) (0.00280) (0.00409) (0.00412)
(Partial) R2 0.0827 0.0597 0.108 0.0498 0.0351 0.0652
Observations 9095 4548 4547 7472 3736 3736

�R2 81%, p < 0.001 86%, p < 0.01

Dependent variable: Performance pay

Risk attitude 0.0128��� 0.0108��� 0.0165��� 0.00977��� 0.00736�� 0.0144���

(0.00174) (0.00245) (0.00262) (0.00199) (0.00274) (0.00309)
(Partial) R2 0.00870 0.00670 0.0132 0.00487 0.00295 0.00966
Observations 5758 2879 2879 4464 2232 2232

�R2 97%, p = 0.20 227%, p = 0.15

Dependent variable: Smoking

Risk attitude 0.0199��� 0.0161��� 0.0239��� 0.0125��� 0.00982��� 0.0152���

(0.00154) (0.00222) (0.00218) (0.00175) (0.00253) (0.00248)
(Partial) R2 0.0119 0.00755 0.0182 0.00481 0.00291 0.00723
Observations 15162 7581 7581 11652 5826 5826

�R2 141%, p < 0.01 148%, p = 0.12

Note: The table reports OLS estimates, with binary dependent variables taking the values zero and one.
If not stated otherwise, all the data refer to the year 2009. The regressions use inverse probability weights
that come from probit regressions of group assignment on gender, a second-order age polynomial, and
years of education. If values are missing, we assume probabilities of 1/2. Regressions are based only on
respondents who are 18 years or older, and those for performance pay include only respondents up to the
age of 66 who work full-time and receive wages or salaries. Risky financial securities are, in the SOEP,
a residual category of securities without a fixed interest rate, like stocks or options (“other securities”).
Since the relevant question was asked on the household level in 2010, the units of observation in the
respective regressions are households in that year. Performance pay indicates that an employee receives
payments from profit-sharing, premiums, or bonuses. Smoking refers to 2010. The variable risk attitude
in each of the panels refers to the respective domain-specific question asked in the SOEP. The contexts
are financial matters for holding risky financial securities, career for performance pay, and health for
smoking. The controls used in Columns 4–6 are gender, age, squared age, body height in 2010, years of
education, parental education (whether mother and father each have either Abitur or Fachabitur), log net
household income, and log wealth and log debts of the current household in 2007. The last three variables
are calculated as ln(euro amount + 1). For the regressions involving risky financial securities, all variables
are averaged on the household level, and we base our data only on respondents for whom all information
is available individually. The p-values for the sizes of �R2 are each based on 10,000 permutations.
Heteroskedasticity-robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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D.2 Big Five

Table 11 replicates Table 6, analyzing differences in the Big Five traits instead of differ-
ences in risk attitudes. The results are qualitatively similar to those observed for risk
attitudes and quantitatively even stronger.

Table 11: Differences in Big Five

(a) Agreeableness, conscientiousness, and extraversion

Unweighted Weighted

Sample: pooled below above below above
(1) (2) (3) (4) (5)

Domain: Agreeableness

Female 0.345∗∗∗ 0.274∗∗∗ 0.415∗∗∗ 0.271∗∗∗ 0.436∗∗∗
(0.0155) (0.0207) (0.0229) (0.0208) (0.0236)

R2 0.0297 0.0212 0.0386 0.0209 0.0419
Observations 16359 8180 8179 8180 8179

�R2 83%, p < 0.001 100%, p < 0.001

Height (in ’10) -0.0172∗∗∗ -0.0128∗∗∗ -0.0215∗∗∗ -0.0126∗∗∗ -0.0229∗∗∗
(0.000862) (0.00118) (0.00126) (0.00118) (0.00129)

R2 0.0262 0.0162 0.0369 0.0158 0.0413
Observations 14846 7423 7423 7423 7423

�R2 127%, p < 0.001 161%, p < 0.001

Domain: Conscientiousness

Female 0.143∗∗∗ 0.0760∗∗∗ 0.210∗∗∗ 0.0757∗∗∗ 0.210∗∗∗
(0.0157) (0.0209) (0.0233) (0.0208) (0.0239)

R2 0.00510 0.00163 0.00986 0.00164 0.00976
Observations 16359 8180 8179 8180 8179

�R2 506%, p < 0.001 494%, p < 0.001

Height (in ’10) -0.00876∗∗∗ -0.00512∗∗∗ -0.0121∗∗∗ -0.00513∗∗∗ -0.0118∗∗∗
(0.000883) (0.00118) (0.00131) (0.00117) (0.00136)

R2 0.00677 0.00261 0.0116 0.00265 0.0111
Observations 14846 7423 7423 7423 7423

�R2 344%, p < 0.001 319%, p < 0.001

Domain: Extraversion

Female 0.197∗∗∗ 0.122∗∗∗ 0.272∗∗∗ 0.127∗∗∗ 0.255∗∗∗
(0.0156) (0.0194) (0.0244) (0.0196) (0.0247)

R2 0.00967 0.00481 0.0150 0.00527 0.0132
Observations 16359 8180 8179 8180 8179

�R2 212%, p < 0.001 151%, p < 0.01

Height (in ’10) -0.00254∗∗ 0.0000471 -0.00469∗∗∗ -0.0000377 -0.00343∗
(0.000877) (0.00109) (0.00137) (0.00111) (0.00139)

R2 0.000569 0.000000254 0.00159 0.000000163 0.000863
Observations 14846 7423 7423 7423 7423

�R2 625381%, p < 0.01 529774%, p < 0.01

Note: The table continues on the next page.
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(b) Neuroticism and openness

Unweighted Weighted

Sample: pooled below above below above
(1) (2) (3) (4) (5)

Domain: Neuroticism

Female 0.435∗∗∗ 0.359∗∗∗ 0.511∗∗∗ 0.360∗∗∗ 0.516∗∗∗
(0.0152) (0.0198) (0.0232) (0.0199) (0.0237)

R2 0.0471 0.0386 0.0559 0.0391 0.0564
Observations 16359 8180 8179 8180 8179

�R2 45%, p < 0.01 44%, p < 0.01

Height (in ’10) -0.0204∗∗∗ -0.0169∗∗∗ -0.0241∗∗∗ -0.0171∗∗∗ -0.0244∗∗∗
(0.000862) (0.00114) (0.00130) (0.00116) (0.00133)

R2 0.0366 0.0299 0.0444 0.0306 0.0456
Observations 14846 7423 7423 7423 7423

�R2 49%, p = 0.02 49%, p = 0.02

Domain: Openness

Female 0.129∗∗∗ 0.126∗∗∗ 0.132∗∗∗ 0.120∗∗∗ 0.122∗∗∗
(0.0156) (0.0208) (0.0232) (0.0209) (0.0239)

R2 0.00415 0.00447 0.00393 0.00407 0.00331
Observations 16359 8180 8179 8180 8179

�R2 -12%, p = 0.79 -19%, p = 0.68

Height (in ’10) 0.00107 0.00126 0.000595 0.00107 0.00205
(0.000877) (0.00116) (0.00132) (0.00117) (0.00137)

R2 0.000100 0.000157 0.0000283 0.000113 0.000335
Observations 14846 7423 7423 7423 7423

�R2 -82%, p = 0.61 197%, p = 0.73

Note: The table reports OLS estimates. All regressions only use respondents who are 18 years or older.
The dependent variables are standardized among the respondents who enter the corresponding regression
in Column 1. Columns 4 and 5 use inverse probability weights that come from probit regressions of group
assignment on gender, a second-order age polynomial, and years of education. If values are missing,
we assume probabilities of 1/2. Except for height, all data refer to the year 2009. The p-values for the
respective sizes of �R2 are each based on 10,000 permutations. Heteroskedasticity-robust standard errors
in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Online Appendix: Experimental Instructions

The instructions have been translated from German. Horizontal lines are used to separate
screens.

Welcome

Welcome and thank you for participating in today’s study!
For your participation, you will receive a flat fee of e5, which is going to be paid out
in cash at the end of the study. During the study, you will respond to estimation tasks.
Depending on the quality of your answers, you can additionally earn up to e10. On the
following screens, everything will be explained in detail.
During the study, communication with other participants is not allowed and the curtain
of your cubicle has to remain closed. Your cellphone has to be switched off and no aids
are permitted. On the computer, only use the designated functions and use the mouse
and keyboard to make inputs. If you should have any questions, please stick your hand
out of the cubicle. One of the experimenters is then going to approach you.
Please now click on “Continue” to proceed.

Your Task

Generally, your task in this experiment is to estimate the height of stylized depictions of
men. The more precisely you estimate, the more money you can earn. For that, you will,
later on, see a series of pictures with men of different heights.
More precisely, the men are going to be depicted as “stick figures.” An example is shown
below.
[Picture of a male stick figure]
The men are split into eleven categories, depending on their body heights:

at most 1.55m 1.56m–1.60m
1.61m–1.65m 1.66m–1.70m
1.71m–1.75m 1.76m–1.80m
1.81m–1.85m 1.86m–1.90m
1.91m–1.95m 1.96m–2.00m
at least 2.01m
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Body Heights

As you know, very short and very tall men are found rather infrequently. Most common
are men of around 1.78m. Exactly the same holds for the pictures that you are going
to see later on. The pictures are informed by the actual height distribution among men
in Germany. For that, the data from a large, representative sample of more than 20,000
people in Germany were used. The frequency of observing men of a given height is
depicted in the image below.
For your orientation, we have also printed this image for you. It is lying on your desk.

Body Heights

On the image (on your desk) you see eleven different body heights. For each body height,
it is said how often it is observed in the German population. Most common are men
of a body height of 1.76m–1.80m, with 26.1%. The second most common are men with
body heights of 1.71m–1.75m or 1.81m–1.85m (21.1% each). The third most common is a
height of 1.66m–1.70m or 1.86m–1.90m (11.1% each). Considerably less common are very
tall and very short men. Heights of 1.61m–1.65m or 1.91m–1.95m occur in only 3.8% of
observations, heights of 1.56m–1.60m or 1.96m–2.00m each in only 0.8% of cases. Very
uncommon are heights under 1.56m and above 2.00m (0.1% each).
It is important that you understand the relative frequencies of heights since the pictures
that will be shown later are drawn from the displayed distribution. Thus, it is considerably
more likely that you will see a man with a body height of 1.75m or 1.81m than a man
with a body height of 1.58m or 2.03m.
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To make the estimation of the body heights easier for you, every picture that will be
displayed is accompanied by either a cat or an elephant. The cat has a height of 40cm,
and the elephant is 3.50m tall (each at its highest points). In the picture below, you see
an average man with a height of 1.78m next to the cat and the elephant, respectively.
[two example images here, as described]

Procedure

You will be shown a series of 60 pictures. For this purpose, we will randomly draw 15
different heights from the distribution in the population. Every drawn height will be
shown to you four times in total. The accompanying animal and the position on the
screen may change.
You will first be shown a countdown in seconds. After the countdown has finished, you
will be shown a picture for [0.5/7.5] seconds. Afterward, the following question will be
asked:
How tall was the displayed person?
You can provide your answer on the following scale:

The height of the displayed person was . . .

below average above average

. . . –
1.55m

1.56m–
1.60m

1.61m–
1.65m

1.66m–
1.70m

1.71m–
1.75m

1.76m–
1.80m

1.81m–
1.85m

1.86m–
1.90m

1.91m–
1.95m

1.96m–
2.00m

2.01m–
. . .

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Your Payoff

For each shown picture, there is exactly one correct answer (an interval). For example,
if the height of the shown man should be 1.78m, then this would be the answer “1.76m–
1.80m.” You always have to select exactly one answer. At the end of today’s study,
one of the shown pictures will randomly be selected for you. Your answer for
this picture then determines the payoff that you receive on top of the e5 flat fee.
If you have chosen exactly the correct option, you will additionally receive e10. The
further away you were from the correct answer (how much further to the left or right you
should have clicked), the more is deducted from the e10. For this, the deviation (steps
to the left or right) is squared and multiplied by 10 cents. The maximal deviation is ten
steps (e.g., if you have answered “2.01m–. . . ” but “. . . –1.55m” would have been correct).
In this case, the entire e10 would be deducted.
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You receive more money, the fewer steps are between your selected answer
and the correct answer. The table gives you an overview of the possible deductions
and the resulting additional payments. A printed version of this table is also available at
your desk.

Deviation (steps) 0 1 2 3 4 5 6 7 8 9 10

Deduction (e) 0.00 0.10 0.40 0.90 1.60 2.50 3.60 4.90 6.40 8.10 10.00

Additional payment (e) 10.00 9.90 9.60 9.10 8.40 7.50 6.40 5.10 3.60 1.90 0.00

Control Questions

Please respond to a few questions regarding your comprehension. Feel free to use the
printout at your desk as an aid.

• In each case, which of the two is more likely: the picture depicts a man with a height
of . . .

– 1.76m–1.80m [correct]
2.01m–. . .

– 1.81m–1.85m
1.76m–1.80m [correct]

– 1.76m–1.80m [correct]
1.71m–1.75m

– 1.66m–1.70m
1.81m–1.85m [correct]

• How much money would be deducted from the additional e10?

– Correct would be “1.76m–1.80m.” You responded “2.01m–. . . .” [e2.50]

– Correct would be “2.01m–. . . .” You responded “. . . –1.55m.” [e10.00]

– Correct would be “1.76m-1.80m.” You responded “1.81–1.85m.” [e0.10]

– Correct would be “1.86m-1.90m”. You responded “1.76m–1.80m.” [e0.40]

• Suppose you have missed the picture of the man, but you nonetheless must give an
estimate. What is the best answer? [1.76m–1.80m]

Thank you for your responses! Please wait.

54



Trial Run

Before you see the 60 pictures and estimate the heights, there will first be a trial run.
You will see ten pictures and subsequently have to estimate the height of the respective
man you saw. Unlike later, you are afterward informed about the correct answer.
This trial run is unrelated to the final payout and is meant to introduce you to the task.
The pictures will be displayed for [0.5/7.5] seconds, exactly as in later rounds.
When you are ready, click on “Begin”.

Practice task [n]/10

[Countdown]

[Picture]

How tall was the shown person?

The height of the displayed person was . . .

below average above average

. . . –
1.55m

1.56m–
1.60m

1.61m–
1.65m

1.66m–
1.70m

1.71m–
1.75m

1.76m–
1.80m

1.81m–
1.85m

1.86m–
1.90m

1.91m–
1.95m

1.96m–
2.00m

2.01m–
. . .

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Nine more practice rounds.

Correct answer: [e.g., 1.71m–1.75m]
Your answer: [e.g., 1.81m–1.85m]

Thank you for your responses! Please wait.

Beginning of the Main Part

Thank you for completing the trial rounds.
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You can now begin with the main part of the study. At the end of the study, one of your
following responses will be chosen and determine how much additional money you earn.

Task [n]/60

60 rounds like the practice rounds but without feedback.

Further Questions

Thank you for completing the main part.
Please now also respond to a few more additional questions.
How difficult did you feel was the task? [very easy – very difficult; seven-point scale]
How sure were you about your responses? [very unsure – very sure; seven-point scale]

Further Questions

Big Five questionnaire (BFI-S; Gerlitz and Schupp, 2005)
Scale-use module
Bayesian updating question

Personal Details

Your gender: female male diverse
Your age (in years):
Your body height (in cm):

Do you have any final comments?

Thank you for your participation in this study!
You will receive a flat fee of e5.
In addition, answer no. [n] was chosen to determine your additional payoff. Due to the
deviation of your answer from the correct answer you will additionally receive [X] euros
and [Y] cents.
We will soon begin with the payouts. Please wait at your seat and keep the curtain of
your cubicle closed until your cabin number is called. Then, please enter the adjoining
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room and remember to take the card on which your cabin number is printed with you
and return it.
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